
Safety-Critical Control for Dynamical
Bipedal Walking with Precise Footstep

Placement

Quan Nguyen ∗ Koushil Sreenath ∗∗

∗ Dept. of Mechanical Engineering, Carnegie Mellon University,
Pittsburgh, PA 15213 USA (e-mail: qtn@ andrew.cmu.edu).

∗∗ Depts. of Mechanical Engineering, Robotics Institute, Electrical &
Computer Engineering, Carnegie Mellon University, Pittsburgh, PA

15213 USA (e-mail: koushils@cmu.edu).

Abstract: This paper presents a novel methodology to achieve dynamic walking for underactu-
ated and hybrid dynamical bipedal robots subject to safety-critical position-based constraints.
The proposed controller is based on the combination of control Barrier functions and control
Lyapunov functions implemented as a state-based online quadratic program to achieve stability
under input and state constraints, while simultaneously enforcing safety. The main contribution
of this paper is the control design to enable stable dynamical bipedal walking subject to strict
safety constraints that arise due to walking over a terrain with randomly generated discrete
footholds and overhead obstacles. Evaluation of our proposed control design is presented on a
model of RABBIT, a five-link planar underacted bipedal robot with point feet.
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1. INTRODUCTION

Cyber physical systems (CPSs) have strict safety con-
straints and designing controllers that provide formal guar-
antees of enforcing these safety constraints is critical. In
this paper we consider a specific CPS, a bipedal robot.
Bipedal walking is subject to several safety constraints.
One that is most visual is that of walking over discrete
footholds, requiring critical guarantees of precise foot
placements for ensuring the safety of the bipedal robot.
Here we consider the problem of dynamic walking, and
develop a controller that provides guarantees on stability
and safety. The proposed methodology is also applicable to
other CPSs whose dynamics evolve on complex nonlinear
manifolds as illustrated in Wu and Sreenath (2015).

Footstep placement for fully actuated legged robots has
been carried out by several researchers Kajita et al. (2003);
Kuffner et al. (2001); Chestnutt et al. (2005). Impressive
results in footstep planning and placements in obstacle
filled environments with vision-based sensing is carried
out in Michel et al. (2005); Chestnutt et al. (2003).
However, these methods essentially rely on quasi-static
walking using the ZMP criterion which only enables slow
walking with small steps. Moreover, for a point-foot legged
robot, the above methods are not feasible. The DARPA
Robotics Challenge has inspired several new methods,
some based on mixed-integer quadratic programs Deits
and Tedrake (2014). However, as mentioned in (Deits,
2014, Chap. 4), the proposed method of mixed-integer
based footstep planning does not offer dynamic feasibility
even for a simplified model. On the other hand, footstep
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Fig. 1. The problem of dynamically walking over a ran-
domly generated set of discrete footholds. The dis-
crete footholds serve as strict safety constraints that
need to be enforced with formal guarantees for the
safety of the bipedal robot. Although the proposed
safety-critical control is developed in this paper for
this particular problem, it’s also applicable to more
general CPSs.

placement for dynamic locomotion typically rely on simple
models with massless legs, see Desai and Geyer (2012);
Rutschmann et al. (2012); Wu and Geyer (2013). Although
these results are impressive, extending them to non-trivial
bipedal models is hard. Recent results of using centroidal
dynamics for whole-body dynamic motion including arm
and foot contacts in Dai et al. (2014) is impressive, however
stability guarantees of the hybrid locomotion is unclear.

The proposed approach in this paper deviates from these
prior results by starting off with a periodic dynamic walk-



ing gait with formal stability guarantees and enforcing
safety-critical constraints for achieving precise footstep
placement. The proposed controller can also enforce var-
ious input and state-based constraints. It must be noted
that precise footstep placement for dynamic walking on
underactued bipedal robots with nonlinear and hybrid
dynamics with provable stability and safety is challenging.
Our research develops on recent work on control Lyapunov
function based quadratic programs for bipedal robots and
control Barrier function based quadratic programs for au-
tonomous cruise control in cars, see Galloway et al. (2015);
Ames et al. (2014a). The proposed methodology enables
guaranteeing the trajectory of the swing foot to be within
certain constraints, so as to result in a given step length
when the swing foot hits the ground. This results in placing
the foot precisely on the discrete foothold.

In particular, we employ the method of Hybrid Zero
Dynamics (HZD) and virtual constraints, Westervelt et al.
(2003, 2007), which has been successful in dealing with the
hybrid and underactuated dynamics of legged locomotion.
Experimental implementations of the HZD method using
input-output linearization with PD control for dynamic
walking has been carried out in Sreenath et al. (2011) and
dynamic running in Sreenath et al. (2013) on MABEL.
Recent work on control Lyapunov function (CLF)-based
controllers has resulted in HZD-based stable walking,
Ames et al. (2014b). The flexible control design using CLFs
has been carried out through online quadratic programs
(QPs), facilitating incorporating additional constraints
into the control computation, Galloway et al. (2015), and
𝐿1 adaptive control with model uncertainty in Nguyen and
Sreenath (2015a).

Although the HZD based control design for dynamic
legged locomotion is powerful, these types of controllers
cannot directly help us to enforce safety-critical con-
straints, such as walking over discrete footholds and walk-
ing under obstacles. One way of enforcing the safety con-
straints is to recompute the walking gait by changing the
virtual constraints used for walking. Virtual constraints
are a set of output functions that need to be regulated
by the controller to achieve periodic walking. However,
this involves a complex nonlinear constrained optimiza-
tion which is time-consuming and intractable for online
implementation in a feedback controller.

The main contribution of this paper is a novel safety-
critical control strategy that can guarantee precise footstep
placement for dynamic walking of a hybrid, nonlinear,
underactuated bipedal system. We do this by combin-
ing control Lyapunov function based quadratic programs
(CLF-QPs) Galloway et al. (2015) for tracking the nominal
virtual constraints while respecting the saturation lim-
its of control inputs, and control Barrier function based
quadratic programs (CBF-QPs) Ames et al. (2014a) to
guarantee state dependent safety constraints. The goal
of this paper is to relax the tracking behavior of the
nominal gait by enforcing a set of state dependent safety
constraints, governed by control Barrier functions, that
guide the swing foot trajectory to the discrete foothold and
bend the torso to avoid overhead obstacles. Our method
enables dealing with a large range of desired foothold
separations with precise placement of footsteps on small
footholds that are less than 5% of the leg length. As noted

earlier, this work is generalizable to other CPSs (see Wu
and Sreenath (2015).)

The rest of the paper is organized as follows. Section 2
revisits control Lyapunov function-based quadratic pro-
grams (CLF-QPs). Section 3 revisits Control Barrier Func-
tion and its combination with CLF-QP. Section 4 presents
the proposed CBF-CLF-QP based feedback controller for
enforcing safety constraints. Here we will first present
its application to the simpler problem of avoiding over-
head obstacles before developing for the main problem
of dynamic bipedal walking over a terrain with discrete
footholds (see Fig. 1). Section 5 then presents numerical
validation of the controller on the model of RABBIT, a
five-link planar bipedal robot. Finally, Section 6 provides
concluding remarks.

2. CONTROL LYAPUNOV FUNCTION BASED
QUADRATIC PROGRAMS REVISITED

In this section we start by introducing a hybrid dynamical
model that captures the dynamics of a bipedal robot.
We then review recent innovations on control Lyapunov
functions for hybrid systems and control Lyapunov func-
tion based quadratic programs, introduced in Ames et al.
(2014b) and Galloway et al. (2015) respectively.

2.1 Model

This paper will focus on the specific problem of walk-
ing of bipedal robots such as RABBIT (described in
Chevallereau et al. (2003)), which is characterized by
single-support continuous-time dynamics, when one foot
is assumed to be in contact with the ground, and double-
support discrete-time impact dynamics, when the swing
foot undergoes an instantaneous impact with the ground.
Such a hybrid model is obtained as,

ℋ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

[︂
𝑞

𝑞

]︂
= 𝑓(𝑞, 𝑞) + 𝑔(𝑞, 𝑞)𝑢, (𝑞−, 𝑞−) /∈ 𝑆,

[︂
𝑞+

𝑞+

]︂
= Δ(𝑞−, 𝑞−), (𝑞−, 𝑞−) ∈ 𝑆,

(1)

where 𝑞 ∈ Q is the robot’s configuration variables, 𝑢 ∈ Rm
is the control inputs, representing the motor torques,
(𝑞−, 𝑞−) represents the state before impact and (𝑞+, 𝑞+)
represents the state after impact, 𝑆 represents the switch-
ing surface when the swing leg contacts the ground, and
Δ represents the discrete-time impact map.

We also define output functions 𝑦 ∈ Rm of the form

𝑦(𝑞) := 𝐻0𝑞 − 𝑦d(𝜃(𝑞)), (2)

where 𝜃(𝑞) is a strictly monotonic function of the con-
figuration variable 𝑞, 𝐻0 is an appropriately-sized matrix
prescribing linear combinations of state variables to be
controlled, and 𝑦d(·) prescribes the desired evolution of
these quantities (see Sreenath et al. (2011) for details.)
The method of Hybrid Zero Dynamics (HZD) aims to
drive these output functions (and their first derivatives)
to zero, thereby imposing “virtual constraints” such that
the system evolves on the lower-dimensional zero dynamics
manifold, given by

𝑍 = {(𝑞, 𝑞) ∈ 𝑇Q | 𝑦(𝑞) = 0, 𝐿f𝑦(𝑞, 𝑞) = 0}, (3)



where 𝐿f denotes the Lie derivative, Isidori (1989). In
particular, the dynamics of the system ℋ in (1) restricted
to 𝑍, given by ℋ|Z , is the underactuated dynamics of the
system and is forward-invariant. Periodic motion such as
walking is then a hybrid periodic orbit O in the statespace
with OZ being it’s restriction to 𝑍.

2.2 Input-output linearization

If 𝑦(𝑞) has vector relative degree 2, then the second
derivative takes the form

𝑦 = 𝐿2
f𝑦(𝑞, 𝑞) + 𝐿g𝐿f𝑦(𝑞, 𝑞) 𝑢. (4)

We can then apply the following pre-control law

𝑢(𝑞, 𝑞) = 𝑢∗(𝑞, 𝑞) + (𝐿g𝐿f𝑦(𝑞, 𝑞))
−1 𝜇, (5)

where

𝑢∗(𝑞, 𝑞) := −(𝐿g𝐿f𝑦(𝑞, 𝑞))
−1𝐿2

f𝑦(𝑞, 𝑞), (6)

and 𝜇 is a stabilizing control to be chosen. Defining trans-
verse variables 𝜂 = [𝑦, 𝑦̇]T , and using the IO linearization
controller above with the pre-control law (5), we have,

𝑦 = 𝜇, (7)

=⇒
[︂
𝑦̇
𝑦

]︂
= 𝜂̇ =

[︂
0 𝐼
0 0

]︂
𝜂 +

[︂
0
𝐼

]︂
𝜇. (8)

The closed-loop dynamics can be expressed in terms of
the transverse variables 𝜂 and the states 𝑧 ∈ 𝑍 from (3)
(instead of in terms of the state (𝑞, 𝑞)), to take the form,

𝜂̇ = 𝑓(𝜂, 𝑧) + 𝑔(𝜂, 𝑧)𝜇, (9)

𝑧̇ = 𝑝(𝜂, 𝑧),

where 𝑓(𝜂, 𝑧) = 𝐹𝜂 and 𝑔(𝜂, 𝑧) = 𝐺, with

𝐹 =

[︂
0 𝐼
0 0

]︂
, 𝐺 =

[︂
0
𝐼

]︂
, (10)

and 𝑝(𝜂, 𝑧) arises from the mapping between (𝑞, 𝑞) and
(𝜂, 𝑧).

2.3 CLF-based Quadratic Programs

A control approach based on control Lyapunov functions,
introduced in Ames et al. (2014b), provides guarantees
of exponential stability for the traverse variables 𝜂. In
particular, a function 𝑉 (𝜂) is a exponentially stabilizing
control Lyapunov function (ES-CLF) for the system (9) if
there exist positive constants 𝑐1, 𝑐2, 𝜆 > 0 such that

𝑐1‖𝜂‖2 ≤ 𝑉 (𝜂) ≤ 𝑐2‖𝜂‖2, (11)

𝑉̇ (𝜂, 𝜇) + 𝜆𝑉 (𝜂) ≤ 0. (12)

In our problem, we chose a CLF candidate as follows

𝑉 (𝜂) = 𝜂T𝑃𝜂. (13)

The time derivative of the CLF (13) is computed as

𝑉̇ (𝜂, 𝜇) = 𝐿f̄𝑉 (𝜂) + 𝐿ḡ𝑉 (𝜂)𝜇, (14)

where

𝐿f̄𝑉 (𝜂) = 𝜂T (𝐹T𝑃 + 𝑃𝐹 )𝜂,

𝐿ḡ𝑉 (𝜂) = 2𝜂T𝑃𝐺. (15)

The CLF condition takes the form

𝐿f̄𝑉 (𝜂) + 𝐿ḡ𝑉 (𝜂)𝜇+ 𝜆𝑉 (𝜂) ≤ 0. (16)

If this inequality holds, then it implies that the output
𝜂 will be exponentially driven to zero by the controller.

The CLF-QP based controller presented in Galloway et al.
(2015) takes the form:

𝜇∗ =argmin
µ,d1

𝜇T𝜇+ 𝑝1 𝑑2
1

s.t. 𝑉̇ (𝜂, 𝜇) + 𝜆𝑉 (𝜂) ≤ 𝑑1 (CLF)

𝐴AC(𝑞, 𝑞) 𝜇 ≤ 𝑏AC(𝑞, 𝑞) (Constraints)
(17)

where 𝑝1 is a large positive number that represents the
penalty of relaxing the CLF condition (12) and 𝐴AC , 𝑏AC
represent additional constraints such as torque constraints,
contact force constraints, friction constraints and joint
limit constraints. In order to incorporate the additional
constraints, we need to relax the CLF condition (12)
to guarantee the feasibility of the optimization problem.
Therefore, this type of relaxed CLF-QP potentially cannot
ensure the same type of stability claims as those provided
by (Ames et al., 2014b, Thm. 2), as the relaxations of the

inequality constraint on the time-derivative 𝑉̇ (𝜂) result
in a loss of the CLF quality for 𝑉 (𝜂). However, under
appropriate conditions, we still retain the stability of the
hybrid periodic orbit, see Nguyen and Sreenath (2015b)
for further details.

We can also represent this in a standard quadratic program
form:

CLF-QP:

argmin

u=

[︂
𝜇
𝑑1

]︂ 1

2
uT𝐻u

s.t. 𝐴CLFu ≤ 𝑏CLF (CLF)

𝐴AC u ≤ 𝑏AC (Additional Constraints)
(18)

where

𝐻 =

[︂
𝐼 0
0 𝑝1

]︂
; (19)

𝐴CLF = [𝐿ḡ𝑉 −1] ; 𝑏CLF = −𝐿f̄𝑉 − 𝜆𝑉.

If the additional constraints above are constraints on the
control inputs, such as 𝑢min ≤ 𝑢 ≤ 𝑢max, then we have
𝐴AC = 𝐴TS , 𝑏AC = 𝑏TS , where,

𝐴TS =

[︂
(𝐿g𝐿f𝑦(𝑞, 𝑞))

−1 0
−(𝐿g𝐿f𝑦(𝑞, 𝑞))

−1 0

]︂
; 𝑏TS =

[︂
𝑢max − 𝑢∗

𝑢∗ − 𝑢min

]︂
. (20)

The above torque constraints are due to the definition of
the precontrol in (5). This formulation opened a novel
method to guarantee stability of the nonlinear systems
with respect to additional constraints, such as torque
saturation in Galloway et al. (2015) and 𝐿1 adaptive
control in Nguyen and Sreenath (2015a).

Having revisited control Lyapunov function based quadratic
programs, we will next revisit control Barrier functions and
control Barrier function based quadratic programs.

3. CONTROL BARRIER FUNCTION REVISITED

3.1 Control Barrier Function

Consider an affine control system:

𝑥̇ = 𝑓(𝑥) + 𝑔(𝑥)𝑢 (21)



with the goal to design a controller to keep the state 𝑥 in
the set

𝒞 = {𝑥 ∈ Rn : ℎ(𝑥) ≥ 0} (22)

where ℎ : Rn → R is a continuously differentiable function.
Then, a function 𝐵 : 𝒞 → R is a Control Barrier
Function (CBF), Ames et al. (2014a), if there exists class
𝒦 function 𝛼1 and 𝛼2 such that, for all 𝑥 ∈ 𝐼𝑛𝑡(𝒞) =
{𝑥 ∈ Rn : ℎ(𝑥) > 0},

1

𝛼1(ℎ(𝑥))
≤ 𝐵(𝑥) ≤ 1

𝛼2(ℎ(𝑥))
, (23)

𝐵̇(𝑥, 𝑢) = 𝐿f𝐵(𝑥) + 𝐿g𝐵(𝑥)𝑢 ≤ 𝛾

𝐵(𝑥)
. (24)

From Ames et al. (2014a), the important properties of the
CBF condition in (24) is that if there exists a Control
Barrier Function, 𝐵 : 𝒞 → R , then 𝒞 is forward invariant
or in other words, if 𝑥(0) = 𝑥0 ∈ 𝒞, i.e., ℎ(𝑥0) ≥ 0,
then 𝑥 = 𝑥(𝑡) ∈ 𝒞,∀𝑡, i.e., ℎ(𝑥(𝑡)) ≥ 0,∀𝑡. Note that,
as mentioned in Ames et al. (2014a), this notion of a CBF
is more stricter than standard notions of CBFs in prior
literature that only require 𝐵̇ ≤ 0.

In this paper, we will use the following Control Barrier
Candidate Function:

𝐵(𝑥) =
1

ℎ(𝑥)
. (25)

3.2 Combination of CLF and CBF-QP

We define a state dependent constraint ℎ = ℎ(𝑥) ≥ 0
where ℎ(𝑥) is a real function with relative degree one, i.e,

ℎ̇(𝑥, 𝑢) = 𝐿fℎ+ 𝐿gℎ 𝑢, (26)

where 𝐿gℎ ̸= 0.

Since in the CLF-QP (18), the controller 𝑢 is constructed
by I-0 linearization (5), in order to combine with the CBF
condition, we will rewrite (26) in terms of the variable 𝜇

ℎ̇(𝑥, 𝜇) = 𝐿fℎ+ 𝐿gℎ(𝑢
∗ + 𝐿g𝐿f𝑦

−1𝜇). (27)

Consider a Control Barrier Candidate Function (25), then

𝐵̇(𝑥, 𝜇) = − ℎ̇(𝑥, 𝜇)

ℎ2(𝑥)
= 𝐿f̄𝐵(𝑥) + 𝐿ḡ𝐵(𝑥)𝜇, (28)

where,

𝐿f̄𝐵(𝑥) = − 1

ℎ2(𝑥)
(𝐿fℎ(𝑥) + 𝐿gℎ(𝑥)𝑢

∗), (29)

𝐿ḡ𝐵(𝑥) = − 1

ℎ2(𝑥)
𝐿gℎ(𝑥)(𝐿g𝐿f𝑦

−1).

The CBF condition then is

𝐵̇(𝑥, 𝜇) ≤ 𝛾

𝐵(𝑥)
. (30)

We have the following CBF-CLF-QP based controller,

𝜇∗ =argmin
µ,d1

𝜇T𝜇+ 𝑝1 𝑑2
1

s.t. 𝑉̇ (𝜂, 𝜇) + 𝜆𝑉 (𝜂) ≤ 𝑑1 (CLF)

𝐵̇(𝑥, 𝜇)− 𝛾

𝐵(𝑥)
≤ 0 (CBF)

𝑢min ≤ 𝑢 ≤ 𝑢max (TS)

(31)

This can be represented in a standard quadratic program
formulation:

CBF-CLF-QP with Torque Saturation:

argmin

u=

[︂
𝜇
𝑑1

]︂ 1

2
uT𝐻u

s.t. 𝐴CLFu ≤ 𝑏CLF (CLF)

𝐴CBFu ≤ 𝑏CBF (CBF)

𝐴TS u ≤ 𝑏TS (Torque Saturation)
(32)

where 𝐻,𝐴CLF , 𝑏CLF are from (19), 𝐴TS , 𝑏TS from (20),
and

𝐴CBF = [𝐿ḡ𝐵 0] ; 𝑏CBF = −𝐿f̄𝐵 +
𝛾

𝐵
. (33)

Having revisited control Barrier function based quadratic
programs, we will now formulate our controller to achieve
dynamic walking subject to critical safety constraints
such as avoiding overhead obstacles and achieving precise
footstep placements on discrete footholds.

4. SAFETY-CRITICAL CONTROL FOR
DYNAMICAL BIPEDAL WALKING

4.1 Modification of CBF for position based constraints

As presented in Ames et al. (2014a), the standard CBF
is for velocity based constraint, i.e, ℎ(𝑞, 𝑞) ≥ 0 with
relative degree one. For application of CBF to mechanical
systems in general and to the bipedal robotics system in
particular, we need to consider position based constraints,
i.e, functions of the form 𝑔b(𝑞) ≥ 0 (“b” is for “Barrier”)
with relative degree two. The modification of CBF with
position based constraint is first mentioned in Wu and
Sreenath (2015) as a safety criteria for dynamical systems
on manifolds. The idea is that, in order to guarantee the
condition 𝑔b(𝑞) ≥ 0, we construct a barrier constraint with
relative degree one:

ℎCBF (𝑞, 𝑞) = 𝛾b𝑔b(𝑞) + 𝑔̇b(𝑞, 𝑞) ≥ 0. (34)

From this condition, we can guarantee that if 𝑔b(𝑞) starts
with a non-negative initial condition 𝑔b(𝑞0) ≥ 0 and the
constant 𝛾b is strictly positive, then the condition ℎCBF ≥
0 will guarantee that 𝑔b(𝑞) will never cross zero. Because,
if 𝑔b(𝑞) crosses zero from 0+ to 0−, it means that:

𝑔b(𝑞) = 0; 𝑔̇b(𝑞, 𝑞) < 0,

=⇒ ℎCBF (𝑞, 𝑞) = 𝛾b𝑔b(𝑞) + 𝑔̇b(𝑞, 𝑞) < 0,

which violates the CBF condition in (34).

In other words, we can maintain 𝑔b(𝑞) ≥ 0 by barrier
constraint (34). Based on this modification, we now can
apply the CBF-CLF-QP based controller (32) presented
in Section 3.2, with the barrier function formed by ℎ =
ℎCBF (𝑞, 𝑞) from (34).

We next present application of this approach for bipedal
robotics walking with different additional constraints and
criteria.

4.2 Avoiding overhead obstacles during walking

We first illustrate the method for the problem of avoiding
an overhead low ceiling, denoted as (C), by limiting the



Fig. 2. Geometric explanation of CBF constraints for the
problem of avoiding an overhead obstacle located at
coordinates (𝑙m, ℎm) with respect to the stance foot.
If we can guarantee the trajectory of the robot head𝐻
(the red line) to be limited outside the green domain,
we can ensure the biped avoids the obstacle (small red
circle).

head height of the robot during a walking step. The
problem is that there is a low ceiling at a distance ℎr from
the ground at the position of the 𝑖th walking step. We will
formulate and apply a CBF in the 𝑖th step to guarantee
the head height of the robot, ℎH , will be always lower than
the overhead ceiling (ℎH(𝑞) ≤ ℎr) so that the robot is able
to clear the low ceiling obstacle. Therefore, we just need to
guarantee the following position constraint (with relative
degree two) during the whole 𝑖th step:

𝑔C(𝑞) = ℎr − ℎH(𝑞) ≥ 0. (35)

This corresponds to the head height being below the
ceiling. The barrier constraint with relative degree 1:

ℎC(𝑞, 𝑞) = 𝛾b𝑔C(𝑞) + 𝑔̇C(𝑞, 𝑞) ≥ 0. (36)

The CBF-CLF-QP from (31) can then be used with the
Barrier function 𝐵 as defined in (25) with ℎ = ℎC from
above.

In the above constraint, the horizontal position of the
head 𝑙H , did not matter. For a better construction for
this problem, we can also consider avoiding an overhead
obstacle (O) at a specific location, as presented in Fig. 2.
Here, the red circle with center 𝑀 represents the overhead
obstacle located at coordinates (𝑙m, ℎm) with respect to
the stance foot, and the green circle with center 𝑂1

represents the region that the position of the robot head
should avoid to ensure no collision with the obstacle. The
geometric constraints in the figure can be mathematically
represented as follows:

𝑂1𝐻 =
√︀

(𝑅1 + ℎm − ℎH)2 + (𝑙H − 𝑙m)2 ≥ 𝑅1, (37)

Then, the following position constraint,

𝑔O(𝑞) =
√︀
(𝑅1 + ℎm − ℎH)2 + (𝑙H − 𝑙m)2 −𝑅1 ≥ 0,

(38)

corresponds to the head being outside the green circle with
center 𝑂1 in Fig. 2.

The CLF-CBF-QP for this approach will totally be the
same as mentioned above, but the simple constraint (35)
now becomes more complex as (38).

Fig. 3. Geometric explanation of CBF constraints for the
problem of bipedal walking over discrete footholds. If
we can guarantee the trajectory of the swing foot 𝐹
(the red line) to be limited in the blue domain, we will
force our robot to step onto a discrete foothold posi-
tion (thick red range on the ground). This approach
therefore also provides a safety guarantee against foot
scuffing or swing foot being always above the ground
prior to contact.

Based on these problems of avoiding overhead obstacles
with a single barrier constraint, we can now further de-
velop a control strategy for the problem of footstep place-
ment. One interesting application is the problem of walk-
ing over a set of discrete footholds.

4.3 Problem of Walking over Discrete Footholds

If we want to force the robot to step onto a specific position
(see Fig. 1), we need to guarantee that the step length
when the robot swing foot hits the ground is bounded
within a given range [𝑙min; 𝑙max]. Let ℎf (𝑞) be the height
of the swing foot to the ground and 𝑙f (𝑞) be the distance
between the stance and swing feet. We define the step
length at impact as,

𝑙s := 𝑙f (𝑞)|hf (q)=0,ḣf (q,q̇)<0. (39)

The discrete foothold constraint to be enforced then be-
comes,

𝑙min ≤ 𝑙s ≤ 𝑙max. (40)

However, in order to guarantee this final impact-time
constraint, we construct a state-based constraint for the
evolution of the swing foot during the whole step, so that
at impact the swing foot satisfies the discrete foothold
constraint (40). We now offer a solution for this issue. The
geometric explanation for this is presented in Fig. 3. If we
can guarantee the trajectory of the swing foot, 𝐹 , to be
bounded between the domain of the two circles 𝑂1 and 𝑂2,
it will imply that the step length when the swing foot hits
the ground is bounded within [𝑙min; 𝑙max]. Mathematical
representation for these constraints is stated as follows:



𝑂1𝐹 =
√︁
(𝑅1 + 𝑙f )2 + ℎ2

f ≤ 𝑅1 + 𝑙max,

𝑂2𝐹 =

√︂
(𝑅2 + ℎf )2 + (𝑙f −

𝑙min
2

)2 ≥
√︂
𝑅2

2 + (
𝑙min
2

)2.

When the swing foot hits the ground at the end of the
step, ℎf = 0, ℎ̇f < 0, the step length is 𝑙s, and therefore,√︀

(𝑅1 + 𝑙s)2 ≤ 𝑅1 + 𝑙max,√︂
𝑅2

2 + (𝑙s −
𝑙min
2

)2 ≥
√︂
𝑅2

2 + (
𝑙min
2

)2. (41)

This then implies the discrete foothold constraint (40).

We now define the two barrier constraints based on this
approach, through the position constraints

𝑔ST1(𝑞) = 𝑅1 + 𝑙max −
√︁
(𝑅1 + 𝑙f (𝑞))2 + ℎf (𝑞)2 ≥ 0,

𝑔ST2(𝑞) =

√︂
(𝑅2 + ℎf )2 + (𝑙f −

𝑙min
2

)2

−
√︂

𝑅2
2 + (

𝑙min
2

)2 ≥ 0, (42)

to obtain

ℎST1(𝑞, 𝑞) = 𝛾b𝑔ST1(𝑞) + 𝑔̇ST1(𝑞, 𝑞) ≥ 0,

ℎST2
(𝑞, 𝑞) = 𝛾b𝑔ST2

(𝑞) + 𝑔̇ST2
(𝑞, 𝑞) ≥ 0. (43)

The Control Barrier Candidate Functions then are

𝐵1(𝑞, 𝑞) =
1

ℎST1
(𝑞, 𝑞)

;𝐵2(𝑞, 𝑞) =
1

ℎST2
(𝑞, 𝑞)

. (44)

We now can apply the CBF-CLF-QP based controller (32)
with 𝐻,𝐴CLF , 𝑏CLF from (19), 𝐴TS , 𝑏TS from (20) and

𝐴CBF =

[︂
𝐿ḡ𝐵1 0
𝐿ḡ𝐵2 0

]︂
; 𝑏CBF =

[︂
−𝐿f̄𝐵1 +

γ
B1

−𝐿f̄𝐵2 +
γ
B2

]︂
. (45)

Remark 1. We note that the two problems of avoiding
overhead obstacles and walking over discrete footholds,
presented here, are just two examples for the application of
the CLF-CBF-QP for bipedal robotic walking. With this
methodology, and different design for barrier constraints,
we can further apply this approach for a variety of addi-
tional constraints and criteria during walking control. We
can also increase the performance by designing a better
barrier constraint.

5. NUMERICAL VALIDATION OF
SAFETY-CRITICAL CONTROL FOR DYNAMIC

BIPEDAL WALKING

To demonstrate the effectiveness of the proposed CLF-
CBF-QP based controller, we will conduct numerical sim-
ulations on the model of RABBIT (shown in Figure 4),
a planar five-link bipedal robot with a torso and two legs
with revolute knees. RABBIT has four actuators to control
hip and knee angles, and is connected to a rotating boom
which constrains the robot to walk in a circle, approximat-
ing planar motion in the sagittal plane. Detailed descrip-
tions of RABBIT and the associated mathematical model
can be found in Chevallereau et al. (2003); Westervelt
et al. (2004). Fundamental issues in dynamic walking and
running on RABBIT can be found in Westervelt et al.
(2004) and Morris et al. (2006).

Note that our model of RABBIT that we consider here
is the most detailed model of the experimental system,

(a) RABBIT

q1

q2

q3

q4

q5

(b) Coordinate system

Fig. 4. (a) RABBIT, a planar five-link bipedal robot with
nonlinear, hybrid and underactuated dynamics. (b)
The associated generalized coordinate system used,
where 𝑞1, 𝑞2 are the relative stance and swing leg
femur angles referenced to the torso, 𝑞3, 𝑞4 are the
relative stance and swing leg knee angles, and 𝑞5 is
the absolute torso angle in the world frame.

Fig. 5. Simulation of 3 steps of RABBIT walking while
avoiding overhead obstacles. The left figure is for the
simpler constraint (35) that reduces the head height
during the whole step, with the yellow rectangle
representing the low ceiling. The right figure is for the
more involved constraint (38) to avoid an overhead
obstacle at a specific location, with the yellow circle
representing the location of the obstacle.

Fig. 7. Simulation of RABBIT walking over a set of five
discrete footholds. The black pillars are locations that
the robot needs to step onto, and depict the location
and size of the discrete footholds. (Video available at
http://youtu.be/AN-nSHsRLEo)
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Fig. 6. Three sample runs of RABBIT walking on a set of 30 randomly generated discrete footholds. The desired step
lengths, indicating the distance between the footholds, are chosen randomly in the range 0.25𝑚 to 0.6𝑚. Red arrows
indicate the robot’s resulting step length 𝑙s, and represent the placement of the foot. Blue bars are given ranges of
desired step length [𝑙min, 𝑙max], indicating the size of the footholds.

Fig. 8. Phase plot of RABBIT walking over 30 random
discrete footholds. The figure illustrates torso velocity
versus the torso angle. The thick red line depicts the
nominal limit cycle of the periodic walking gait for
comparison.

incorporating not only the mass and inertia of the links
and rotors, but also friction in the various joints and
transmission. Furthermore, we note that this model is
not a reduced-order model like the inverted pendulum
or the spring-loaded inverted pendulum (SLIP). Finally,
although we are illustrating our controller particularly
for RABBIT, the proposed method is generalizable and
applicable to a variety of bipedal robots with various
morphologies.

For RABBIT, the stance phase is parametrized by a
suitable set of coordinates, given by 𝑞 := (𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞5)
as illustrated in Fig. 4. Here, 𝑞1 and 𝑞2 are the femur angles
(referenced to the torso), 𝑞3 and 𝑞4 are the knee angles, and
𝑞5 is the absolute angle of the torso. Because RABBIT has
point feet (while many other legged robots have flat feet),
the stance phase dynamics are underactuated with the
system possessing 4 actuated degrees-of-freedom (DOF)
and 1 underactuated DOF.

For the problem of avoiding overhead obstacles, the sim-
ulation result for the simpler constraint (35) and for the
more involved constraint (38) is illustrated in Fig. 5.

For the problem of walking over discrete footholds, we
will consider a nominal periodic walking gait or virtual
constraint that will provide a stable walking gait for
RABBIT. This nominal gait has a step length of 0.45𝑚.
We will run the simulation in multiple steps and apply
CBF to change the step length as detailed in Sec. 4.3.
Desired values of step length will be chosen randomly
in the range of 0.25𝑚 to 0.60𝑚, corresponding to a
−44% to +33% change in the nominal step length of
the gait. These values were empirically determined as
the regions for which the controller can guarantee safety
while respecting the hardware torque saturation without
switching from the nominal gait to another gait. Fig. 6
illustrates three sample runs of 30 walking steps. As can
be seen from this figure, the desired range [𝑙min, 𝑙max]
is changed randomly for every step. With the proposed
feedback control method, the robot’s step length at impact
always satisfies this randomly chosen range for each step.
Fig. 7 illustrates the stick figure of RABBIT for 5 steps



of walking, clearly illustrating the precise foot placement
on the discrete footholds. Note that the proposed CLF-
CBF-QP is solved in under 1𝑚𝑠 and lends itself easily to
experimental implementations at real-time speeds.

6. CONCLUSION

In summary, we have presented a novel nonlinear feed-
back control that provides stability guarantees through
Lyapunov functions and critical safety guarantees through
Barrier functions. The proposed method is illustrated on
the problem of dynamic walking over a terrain of ran-
domly generated discrete footholds that are separated by
0.25𝑚 to 0.6𝑚, corresponding to −44% to +33% change in
the nominal gait’s step length. The controller guarantees
critical safety and respects torque saturation, while still
retaining stability guarantees of dynamic walking for a
nonlinear, hybrid, underactuated, five-link planar bipedal
robot. The proposed feedback controller is easily applica-
ble to more broader class of CPSs as well.
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