
Learning-based Trajectory Tracking for Bird-inspired Flapping-Wing Robots

Jiaze Cai*, Vishnu Sangli*, Mintae Kim and Koushil Sreenath

Abstract— Bird-sized flapping-wing robots offer significant
potential for agile flight in complex environments, but achieving
agile and robust trajectory tracking remains a challenge due
to the complex aerodynamics and highly nonlinear dynamics
inherent in flapping-wing flight. In this work, a learning-
based control approach is introduced to unlock the versatil-
ity and adaptiveness of flapping-wing flight. We propose a
model-free reinforcement learning (RL)-based framework for
a high degree-of-freedom (DoF) bird-inspired flapping-wing
robot that allows for multimodal flight and agile trajectory
tracking. Stability analysis was performed on the closed-loop
system comprising of the flapping-wing system and the RL
policy. Additionally, simulation results demonstrate that the RL-
based controller can successfully learn complex wing trajectory
patterns, achieve stable flight, switch between flight modes
spontaneously, and track different trajectories under various
aerodynamic conditions.

I. INTRODUCTION

Flapping-wing Micro Aerial Vehicles (FMAVs) offer
tremendous potential to achieve efficient and agile flight
in complex, cluttered environments by mimicking the ca-
pabilities of their biological counterparts. These vehicles,
capable of simultaneously generating lift, propulsion, and
control forces, can perform maneuvers beyond the reach
of conventional fixed-wing or rotary-wing aircrafts [1]–[3].
Compared to insect-inspired FMAVs, which excel in agility
and hovering, bird-inspired FMAVs (commonly referred to
as ornithopters) offer superior efficiency and robustness for
sustained, long-distance flights. However, achieving robust,
agile, and precise trajectory tracking control for bird-inspired
FMAVs poses significant challenges. In particular, several
key obstacles across various aspects of bird-inspired FMAV’s
design and operation hinder the development and perfor-
mance of effective control systems for these vehicles.
A. Challenges for Control of Bird-inspired FMAVs

Modeling. The bird-inspired FMAVs exhibit highly non-
linear aerodynamics [2]. Birds and bird-inspired FMAVs
typically operate within a Reynolds number range of 103

to 106, where the boundary layer is prone to laminar-
turbulent transitions, significantly affecting the aerodynamic
characteristics of flapping flight. These flow transitions are
difficult to model accurately [4]. Additionally, unlike insect-
scale or hummingbird-scale hoverable FMAVs (where wing
inertia is often negligible), the larger wings of bird-inspired
FMAVs introduce significant inertia effects. This necessitates
the application of a multi-body dynamics model to capture
the full complexity of the system’s movements and inter-
actions [5]. Furthermore, many of the current bird-inspired

*Equal Contribution. The authors are with the Hybrid Robotics Group,
University of California, Berkeley, CA 94720, United States.

Fig. 1: The layout of the flapping-wing robot. In simulation,
the flapping wing robot is modeled as 4 rigid ellipsoid bodies
(yellow ellipses) for aerodynamic force computation men-
tioned in Section II-C with 5 revolute joints (blue cylinders).
The bold red, green, and blue arrows represent the local xyz-
frame of the vehicle.

FMAVs feature flexible wings that couple with the aerody-
namic forces acting on them [6]. The deformation of these
wings during flight plays a critical role in determining their
aerodynamic properties. This aeroelastic coupling, where
aerodynamic forces and structural deformation interact, fur-
ther complicates the modeling of FMAVs and presents a
substantial challenge to the development of effective control
strategies [4].

Simulation. Given the current limitation on existing mod-
els in flapping-wing flight dynamics, aerodynamics, and
aeroelastics, simulating the full flight dynamics is challeng-
ing. High-fidelity simulations are computationally intensive.
For instance, Computational Fluid Dynamics - Computa-
tional Structure Dynamics (CFD-CSD) simulations usually
take days to run. While the dynamics simulations for lower-
fidelity models including Unsteady Vortex Latex Method
(UVLM) and Unsteady Lifting Line Method are computa-
tionally feasible, they fail to account for viscous flow effects
like leading-edge-vortex (LEV) and have a limited applica-
tion range including the requirement of large wing aspect
ratio and relatively small angle of attack for accurate results
[7]–[10]. The lack of high-accuracy and low-computing-cost
dynamical simulation environments for FMAVs is another
challenge impeding the development of effective controllers
for bird-inspired FMAVs.

Design. From the perspective of design, the limited weight
budget arising from the nature of an aerial vehicle constrains
the in-flight onboard computational power. This, in turn,
limits the complexity of the controller despite the complex
dynamics of the vehicle. In addition, the weight constraint
also restricts the number of effective actuators in the design.
Most of the recent bird-inspired FMAVs are driven by a link
mechanism with a single motor with gearbox for flapping,



Fig. 2: The flapping-wing robot follows a loop trajectory generated from simulation. The robot performs an Immelmann turn
(pitch up and roll back level), a half-loop maneuver (pitch down and roll back level), and a rejoin to the trajectory. The dark
dots represent the reference points of the trajectory over time. Video results are posted at https://youtu.be/54Gcbvgfz7Q.

and controlling the vehicle by changing the motor speed and
the angle of an actuated tail [11]. The limited control inputs
restrict the agility and possible maneuvers of the FMAVs.
B. Related Work
FMAVs can be broadly categorized into two types: insect-
or hummingbird-inspired FMAVs, which are optimized for
near-hover flight, and bird-inspired FMAVs, which are pri-
marily designed for forward flight [12]. Insect-sized FMAVs,
due to their small size and lightweight structures, are typi-
cally more focused on hovering capabilities and agile maneu-
vers, often controlled with high-frequency wing flapping. In
contrast, bird-inspired FMAVs are larger and more suitable
for efficient forward flight, with the added complexity of
managing the transition between various flight modes [13].

Traditional control approaches for these bird-inspired
flapping-wing robots often rely on model-based methods
with single-rigid-body dynamics, which are generally suc-
cessful in limited environments but struggle with the non-
linear, highly dynamic aerodynamic forces and complex
multi-degree-of-freedom movements inherent to flapping-
wing flight [6]. These approaches include low-level at-
titude control systems designed for ornithopters, where
proportional-integral-derivative (PID) techniques, and state
feedback linearization are used to manage basic flight stabi-
lization and orientation [6], [14].

Some progress has been made in optimization-based ap-
proaches for flight control of bird-sized FMAVs, as demon-
strated in several studies [15]–[18]. Researchers have also
explored model-based methods for trajectory tracking and
generation, particularly in forward flight [19]–[23]. However,
these systems usually result in limited accuracy due to the
simplifications required to handle the complex dynamics of
flapping-wing flight. Furthermore, the control mechanisms in
such systems typically involve a small number of actuators,
primarily focusing on the flapping frequency and the tail’s
pitch or yaw angles, which results in limited agility and
maneuverability during flight.

In contrast, learning-based approaches have recently
emerged to overcome the limitations of traditional control
methods. Reinforcement learning (RL) has been success-
fully applied to various mobile platforms, including ground

vehicles, drones, and legged robots, enabling robust and
agile locomotion in highly dynamic environments [24]–[28].
However, its application in flapping-wing robots remains
relatively underexplored. Some early studies have applied
RL for specific tasks such as improving lift generation in
butterfly-like MAVs or suppressing wing vibrations during
wing trajectory tracking [29], [30]. Experimental work has
also demonstrated the potential for RL in enhancing effi-
ciency in lift generation and in modeling dynamic behavior in
traditional control frameworks [31], [32]. RL-based control
has particularly shown promise in enabling agile maneuvers,
such as back-flips and escape behaviors, in insect-sized
hoverable FMAVs [33]–[37]. Despite these advances, the use
of RL in bird-sized FMAVs for forward flight remains an
open area of research, with significant potential to unlock
new levels of agility and performance.
C. Contribution
This paper presents a learning-based approach for trajectory
tracking in flapping-wing robots using reinforcement learn-
ing. Our method leverages a simulation environment built in
MuJoCo (Multi-Joint dynamics with Contact) [38] to model
the robot’s dynamics and aerodynamics, enabling us to train
the RL policy under various conditions. We focus on devel-
oping a control framework that not only tracks predefined
trajectories with high precision but also handles challenging
maneuvers such as loops and Immelmann turns, as shown
in Fig. 2. Furthermore, we explore the robustness of the
proposed method in the presence of wind disturbances and
varying aerodynamic conditions, demonstrating its versatility
in real-world scenarios. The level of versatility in motions
and the capability to manage high-DOF actuation achieved
by this method are difficult to emulate using conventional
approaches, as demonstrated in [6], [14]. In addition to
introducing a novel control strategy, we demonstrate the
stability of the controlled system and reveal its periodicity
through a phase study.

II. PROBLEM DESCRIPTION

A. Platform Overview
In this paper, we use a flapping-wing robot with a wingspan
of 0.995m, a standard mean chord (average wing width)

https://youtu.be/54Gcbvgfz7Q


of 0.17m, and a weight of 0.31kg, as shown in Fig. 1. A
simplified model of the flapping-wing robot showing the
joint and rigid bodies is shown in Fig. 1. Unlike many
existing bird-inspired FMAVs, this robot features nj = 5
individually controllable joints (qj ∈ R5) that independently
actuate the wing and tail. Each wing is equipped with a flap
joint (q1 for the left, q3 for the right) to control the flap
angle, and a feathering joint (q2 for the left, q4 for the right)
to control the wing pitch. Additionally, there is a dedicated
joint q5 to control the tail pitch. In total, the robot possesses
5 actuated DoFs. The robot also has a floating base qb with
6 DoFs comprising translational positions [qx, qy, qz]

T and
rotational positions [qϕ, qθ, qψ]

T , which result in a total of
n = 11 DoFs. Thus, the system has n − nj = 6 degrees of
underactuation. The full system’s generalized coordinates q
can be represented as q = [qb,qj ]

T ∈ Rn.
B. Dynamical Model

Although the wings of a flapping-wing robot can be flex-
ible, in this work, we assume all bodies in the robot are
rigid for simplicity. The aerodynamic effect caused by the
deformation of wings is handled by domain randomization
mentioned in Table III. The full-order dynamical model of
the flapping-wing robot system is derived with the Newton-
Euler formulation:

M(q)q̈+C(q, q̇)q̇+G(q) =

[
06

τ

]
+ uaero(q, q̇), (1)

where M(q) ∈ Rn×n is the mass matrix, C(q, q̇) ∈
Rn×n represents the Coriolis and centrifugal forces, and
G(q) ∈ Rn denotes the gravitational forces, τ ∈ Rnj is
the input joint torque, while uaero(q, q̇) ∈ Rn represents the
generalized aerodynamic forces. Note that the generalized
aerodynamic force, uaero, can be calculated as

uaero(q, q̇) =

m∑
i=1

JTi (q)Faero,i(q, q̇), (2)

where JTi (q) ∈ Rn×6 is the Jacobian transpose that maps
Cartesian aerodynamics wrench Faero,i(q, q̇) ∈ R6 acting on
each body, i, to the generalized coordinates, and m is the
number of bodies considered in the fluid.
C. Simulation

MuJoCo is used as the physics simulator in this work,
functioning as the environment for training and testing
our control policy. In MuJoCo, the multi-body dynamics
model mentioned in Section II-B is computed. MuJoCo also
provides stateless fluid force models (i.e., the fluid force
computation does not have its own dynamics with fluid
states, but rather is only dependent on the state of the
robot - a simplifying approximation that is made), which
is used to model the Cartesian aerodynamic wrench Faero =
[fTaero τTaero]

T acting on each body i of the robot. MuJoCo
provides two different fluid models: (1) a simplified Inertia
Fluid Model that estimates the aerodynamic wrench based on
its equivalent inertia box, and (2) a more elaborate Ellipsoid
Fluid Model that accounts for the aerodynamic force and
moment of 5 different aerodynamic effects on a projected

TABLE I: Definition of variables used in the aerodynamics
equations

Variable Definition
v Velocity (vector) relative to airflow
v∥ Component of velocity parallel to surface
ω Angular velocity (vector)
ρ Fluid density
ν Kinematic viscosity of the fluid

mA Added mass (vector)
IA Added moment of inertia (vector)

CD, blunt Drag coefficient for blunt body
CD, slender Drag coefficient for slender body
CD, angular Angular drag coefficient

CK Kutta lift coefficient
CM Magnus force coefficient
A

proj
v Projected area in the direction of velocity

Amax Maximum reference area
V Volume of the body

Amax Maximum reference area
ID Reference moment of inertia for drag
rV Effective radius for viscous drag

ellipsoid [36]. For higher simulation accuracy, we model
all lifting bodies, including wings and tail, with the more
elaborate Ellipsoid Fluid Model and model the remaining
bodies, i.e., the main body, with the Inertia Fluid Model
considering the relatively small aerodynamic effect of the
main body compared to the lifting bodies. This enables us
to capture the most significant aerodynamic properties of the
robot in MuJoCo with a relatively simple model.

The total aerodynamic force, faero, and moment τaero for a
single rigid body in the fluid are calculated as follows: For
Inertia Fluid Model,

faero = fA + fV , (3)
τaero = τA + τV , (4)

and for Ellipsoid Fluid Model,

faero = fA + fD + fM + fK + fV , (5)
τaero = τA + τD + τV , (6)

where subscripts A, D, M , K, and V represent added mass,
viscous drag, Magnus lift, Kutta lift, and viscous resistance,
respectively. The computation of each term is summarized
as follows based on [36],

fA = −mA ◦ v̇ + (mA ◦ v)× ω,

τA = −IA ◦ ω̇ + (mA ◦ v)× v + (IA ◦ ω)× ω,

fD = −ρ
[
CD,bluntA

v
proj + CD,slender(Amax −Av

proj)
]
∥v∥v,

τD = −ρ [CD,angularID + CD,slender(Imax − ID)]ω,

fM = CMρV ω × v,

fK = CKρAv
proj∥v∥(v × v∥)× v,

fV = −6πrV νv,

τV = −8πr3V νω,
(7)

where ◦ is defined as element-wise multiplication, and each
of the terms used is defined in Table I. Note that in this work,
the fluid coefficients CD,blunt, CD,slender, CD,angular, CK , and
CM are manually tuned to match the designed lift-to-drag



TABLE II: Aerodynamic coefficients used in this work.

Coefficient CD, blunt CD, slender CD, angular CK CM

Value 0.2 0.12 1.5 3.14 1

Policy

LPF Joint PD 
Control ler

Fig. 3: The control diagram for flapping-wing robot trajec-
tory tracking control. The variables used here are covered in
Section III-C.

ratio of the FMAV at gliding, given that the horizontal-
to-vertical distance covered by the FMAV is equal to the
lift-to-drag ratio when gliding in steady state. The resultant
coefficients are provided in Table II.

III. RL-BASED TRAJECTORY TRACKING CONTROL

A. Control Framework

Our goal is to develop an RL controller framework for a bird-
inspired FMAV that can track target trajectories and achieve
bird-like maneuverability. As seen in Fig. 3, we use an RL-
trained policy that takes observations as input and outputs
actions that are scaled and smoothed via a low-pass filter
into target joint positions. These are then used by the low-
level PD controller to compute motor torques. The policy
operates at 50 Hz, while the low-level joint PD controller
runs at the simulation frequency of 250 Hz.

One important aspect of our framework was ensuring
energy-efficient behavior, since policies tend to prefer unre-
alistically high flapping frequencies when left unconstrained.
Aside from the enforced energy penalties during training, the
low-pass filter was given a 7Hz cutoff frequency to limit the
viable flapping frequencies to 4-6Hz.

Due to the difficulty of adapting to a variety of arbi-
trary maneuvers as well as lack of a “safe state” in our
state space, we found it difficult to train such a policy
from scratch. Therefore, we use a curriculum-based training
scheme involving 3 stages of increasing difficulty to train
a controller: (1) constant forward flight, (2) climbing and
diving at variable speeds, (3) turning and arbitrary ma-
neuvers. Following this, Dynamics randomization was an
additional stage to improve the robustness and adaptability of
trained controllers, where we randomized parameters relating
to rigid body dynamics, motor-level characteristics, and the
aerodynamics and wind condition faced by the system.
B. Target Trajectories

We procedurally generate 3D position trajectories Qd
xyz(t)

that are defined by simple linear and circular paths. The
policy is provided with a look-ahead buffer of the up-
coming trajectory and is rewarded based on its position
error against the current target position along the trajectory.
These simple linear and circular trajectories were chosen
over trajectories obtained through model-based optimization
or Bézier curves [39] due to uncertainty in aerodynamic

feasibility. The robot’s flight path is not tightly constrained
to this target trajectory to allow the policy to optimize its
movement according to the aerodynamics of the system.
Hence, this ensures that the learning is unconstrained and
natural, with the resulting emergent behavior dictating its
own orientation to fit the desired movement. With forward
speed, Z-axis velocity, and global angular yaw rate, we
can specify commands that combine the four basic flying
skills: flying straight, diving, climbing, and turning. The
duration of each command is fixed at 3 seconds, enabling
the policy to follow arbitrary paths and become robust to
skill transitions. Vertical loops were also modeled to simulate
aerobatic maneuvers like back-flips and Immelmann turns.
C. State and Action Spaces

The controller outputs actions at ∈ Rnj (nj is the number of
controllable joints as mentioned in Section II-A) that specify
the desired actuated joint positions qdj , which are used by the
low-level joint PD controller to compute the motor torque.
The action space is centered in the nominal pose (wings and
tail flat at 0 degrees) and is normalized to the respective joint
limits.

The observation space of the policy, ot ∈ R490, consists
of sensor-related observations and trajectory information.
The sensor observations for each time frame include the
orientation quaternion η, local angular velocity p, q, r, joint
motor positions qj , and a local x-velocity measurement
relative to the wind vx,air. The latter sensor is modeled
after a pitot tube and acts as the most plausible form for a
physical flapping robot to receive onboard velocity readings.
The policy receives a history of these sensor readings and
past action outputs for the past 25 steps, corresponding to a
window of 0.5s. This history allows the policy to infer the
dynamics of the system. The policy also receives 5 trajectory
points spaced evenly over 0.6s of the upcoming trajectory
Qd
xyz(t) in local-frame relative coordinates ∆qdxyz . Although

shorter trajectory windows of 0.2s have also resulted in well-
performing policies, larger windows are included to allow for
smooth flapping behavior.
D. Rewards

The heuristics for our reward r for the policy are kept con-
stant across all stages of training: to minimize position error
relative to the target trajectory while preserving balance. The
reward function has four parts

r = 0.5rpos + 0.1rΩ + 0.2rϕ,θ + 0.05renergy (8)

where rpos is the position tracking term that minimizes body
position error to the current desired position on the target
trajectory. rΩ attempts to minimize the main body angular
rates ωx, ωy, ωz to ensure smoother and stable behavior. rϕ,θ
rewards a lower roll and pitch, motivating the robot to stay
leveled. Although a bird’s pitch and roll are involved in
its flight movements, this reward ensures that the learned
behavior varies its orientation only when needed. This is
because a bird receives maximal horizontal thrust when
oriented horizontally, and hence this reward encourages the
policy to maximize its time in this orientation. renergy is the



TABLE III: The range of dynamics randomization.

Parameters Range

Joint Damping Ratio [0.9, 1.1] Nms/rad
Link Mass & Link Inertia ±10%× default
Link CoM Position Offset [-0.05, 0.05] m
Aerodynamic Coefficients 30%× default
Aerodynamic Added Mass & Inertia 10%× default
Wind x,y,z Velocity [±2], [±2], [±1.5] m/s

energy term [40] that motivates energy-efficient behavior,
i.e., gliding instead of flapping when possible, mimicking
physical birds. This term also serves the purpose of discour-
aging high flapping frequencies so that the learned frequency
resembles those of physical birds of the same wing area. The
reward weights were manually tuned to ensure fast and stable
learning.
E. Dynamics and Aerodynamic Force Randomization
We have incorporated the randomization of dynamic param-
eters in our training framework in order to better prepare
policies for the sim-to-real gap. Similar to previous work
[39], randomization was applied to rigid body mass, inertia,
and center of mass.

Although the Mujoco Fluid model is capable of cap-
turing salient aerodynamic effects using ellipsoids, it still
has limited accuracy to simulate the real physics of the
flapping-wing robot. This is due to three main reasons: (1)
the hand-tuned fluid coefficients may not match the physical
model, (2) it is difficult for the static (without fluid states)
characteristic of the MoJoCo aerodynamic model to capture
the dynamic unsteady aerodynamic force (with fluid states)
unsteady aerodynamic force in highly dynamical motions,
and (3) the deformation on the physical wing (which is not
modeled) can cause variations in the resultant aerodynamic
forces. To overcome this deviation between the simulation
and the real world, a randomization on the aerodynamics
is incorporated. This includes randomizing the five different
fluid coefficients, the added mass mA, and the added inertia
IA mentioned in Table I on each body. Additional wind
disturbances with randomized direction and magnitude were
also implemented to improve the robustness and adaptability
of the policy. The detailed range of dynamics randomization
is shown in Table III. The initial position and velocity
are also randomized to ensure that the policy can robustly
recover and rejoin trajectories.
F. Episode Design
Each episode lasts a maximum of 30 s, corresponding to
1,500 control steps. A position error termination condition
is enforced throughout all stages of control, terminating
episodes if the robot deviates more than 3 meters from the
target position. This condition accelerates early training and
improves the precision of trajectory tracking while allowing
the policy to optimize its own flight path. Additionally, an
orientation termination condition is also applied during the
first two stages of training to ensure that the robot’s absolute
roll |qϕ| and pitch |qθ| never exceeded 90◦ when learning
basic flight. This constraint is removed when training later

0.0 0.2 0.4 0.6 0.8 1.0
Time (s)

−0.25

0.00

0.25

0.50

0.75

1.00

Jo
in

t A
ng

le
 (r

ad
)

Wing Flap Angle Wing Pitch Angle Tail Angle

Fig. 4: Forward flapping behavior of the controller shown
through time series of the wing pitch angle, wing flap angle,
and tail angle in 1s. The dashed lines are target joint positions
while the solid lines indicate the actual joint positions.

stages that involve arbitrary paths and extreme maneuvers.
We trained our policy with a multilayer perceptron (MLP)
actor-critic architecture with Proximal Policy Optimization
(PPO) [41] employing 256 parallel environments. Each train-
ing stage required approximately 8 million steps, with a full
controller trained in about 30 million steps. The training was
carried out on an Intel Core i7-11800H CPU and took around
5 hours to train the full controller.

IV. RESULTS

We now validate the performance of the policies trained
for our control framework. Fig. 4 shows 1 second of flapping
at a speed of 3.8m/s. The wing flapping, wing pitch, and tail
angles were found to have a fundamental frequency of 5.3 Hz
with energies of 38.65%, 36.81%, and 38.24% respectively,
indicating reasonable fit to a single frequency mode.
A. Stability Analysis of the Flight Controller

1) System Identification
To analyze the dynamics of the RL-based controller and

validate the stability of the control system, a model de-
rived from system identification using input-output pairs
is introduced, as shown in Fig. 5. Following a method
similar to [42], a low-dimensional linear system is extracted
from the flapping-wing robot under the control of the RL-
based controller, which is then employed to demonstrate
its stability. The input u of the closed-loop system is the
desired position [qdx, q

d
y , q

d
z ]
T ∈ R3 while the output of the

system is y = [q̂x, q̂y, q̂z]
T . We develop a linear model

that approximates the behavior of the closed-loop system
governed by the model-free RL-based policy. The LTI system
is obtained by fitting the input-output pairs, where the input
of the closed system is determined by the input of the policy
network. The fitted input-output dynamics of position is
given by:

Yx(s) =
49.89s2 + 164.9s+ 26.27

s3 + 3.554s2 + 6.438s+ 2.809
(9)

Yy(s) =
−0.09798s2 − 10.07s− 24.67

s3 + 3.554s2 + 6.438s+ 2.809
(10)

Yz(s) =
1.006s2 + 1.020s+ 3.836

s3 + 3.554s2 + 6.438s+ 2.809
(11)

Note that the derived linear model’s predicted result had a
Mean Squared Error (MSE) as low as 5.629× 10−5 against
the actual system output.



Fig. 5: System identification is performed on the closed-loop
system. A low-dimensional system is derived from the high-
dimensional, nonlinear dynamics of the flapping-wing robot,
which is controlled by its RL policy. The input, u, of this
simplified system is the desired global position, while the
output, y, represents the robot’s measured response, driven
by the low-level RL policy.

(a) Pole-zero of qx (b) Pole-zero of qy (c) Pole-zero of qz
Fig. 6: Pole-zero plots for the closed-loop system’s linear
dynamics in three dimensions.

2) Stability
We assess the stability of the closed-loop system’s linear

dynamics by examining the pole positions of the above
transfer functions. The plots of poles and zeros for all three
dimensions are presented in Fig. 6. Based on the analysis,
all identified linear systems exhibit Bounded Input Bounded
Output (BIBO) stability, as all poles are located in the left-
half plane (LHP). This shows that the input-output dynamics
of the closed-loop system comprised of the nonlinear FMAV
controlled by the RL policy is locally input-output stable.
Additionally, all zeros are located in the LHP, confirming
that the system is minimum phase in all dimensions. The
result implies that the input-output relationship of our system
does not exhibit non-minimum phase behavior, which can
often be found in conventional fixed-wing aircraft, where tail-
down effects precede tail-up behavior. Therefore, the choice
of input-output plays a critical role in achieving a minimum
phase, making the closed-loop system more controllable and
stabilizable.

B. Phase portraits of Flying Tasks

To illustrate the system’s periodicity under different tasks,
we present phase portraits of the wing flap and wing pitch
joints when undergoing forward flight, climbing, and turning.
These portraits exhibit closed, consistent periodic orbits,
indicating that the robot’s flapping and pitching are stable
and periodic throughout flight. Fig. 7 shows wing’s pitch
and flap angles when flying forward and climbing at 3m/s
forward velocity. We plot the phase of only the right wing
as the robot’s symmetry ensures identical behavior on the
left. As shown in Fig. 7 (a), climbing flight tends to have a
larger range of motion for flap joint position and velocity,
which is consistent with the fact that robot consumes more

−0.2 0.0 0.2 0.4 0.6
Wing Flap Joint Position q1, 3 (rad)

−20

−15

−10

−5

0

5

10

15

W
in

g 
Fl

ap
 Jo

in
t V

el
oc

ity
 

̇ q 1
,3

 (r
ad

/s
)

Forward Flight
Climbing

(a) Wing Flap joint

−0.2 −0.1 0.0 0.1 0.2
Wing Pitch Joint Position, q2, 4 (rad)

−6

−4

−2

0

2

4

6

8

W
in

g 
Pi

tc
h 

Jo
in

t V
el

oc
ity

, 
̇ q 2

,4
 (r

ad
/s

)

Forward Flight
Climbing

(b) Wing Pitch joint
Fig. 7: Comparing phase portraits between cruising and
climbing

−0.50 −0.25 0.00 0.25 0.50 0.75
Wing Flap Joint Position q1, 3 (rad)

−20

−10

0

10

20

W
in

g 
Fl

ap
 Jo

in
t V

el
oc

ity
 

̇ q 1
,3

 (r
ad

/s
)

Left
Right

(a) Wing Flap joint

−0.4 −0.2 0.0 0.2
Wing Pitch Joint Position, q2, 4 (rad)

−10

−5

0

5

10

W
in

g 
Pi

tc
h 

Jo
in

t V
el

oc
ity

, 
̇ q 2

,4
 (r

ad
/s

)

Left
Right

(b) Wing Pitch joint
Fig. 8: Comparing left and right wing phase portraits when
turning left

energy when climbing up. On the other hand, the average
pitch joint angles in Fig. 7 (b) shift to negative values while
retaining the same periodic motion. Note that the negative
pitch angle is consistent with the body frame, where pitching
up corresponds to more negative values. This implies that the
policy tends to acquire a higher angle of attack to gather more
lift for climbing. We then compare the flap and pitch joints
between the left and right wings while gradually turning left,
as seen in Fig. 8. The right wing is raised (higher flap joint
position) and pitches up (more negative pitch joint position)
to generate more lift on the right. This results in higher lift
and thrust generation on the right wing, thereby turning left.

C. Trajectory Tracking Performance

A series of trajectories were generated to validate the perfor-
mance of the trained policies. Simple trajectories demonstrat-
ing fundamental flight skills like cruising, climbing, gliding,
diving, and turning are shown in Fig. 9. The target lookahead
buffer from Section III-B allows the policies to anticipate
command changes and accordingly optimize its flight path.
We designed an aerobatic trajectory to demonstrate the ver-
satility of the closed-loop RL controller on the FMAV, shown
in Fig. 13. The corresponding snapshots of each maneuver in
the same trajectory are shown in Fig. 12. These results show
the RL controller’s capability to track highly dynamic trajec-
tories by utilizing various combinations of control inputs to
manipulate its attitude. A few other examples of flapping-
wing robot tracking trajectories are also shown in Fig.
2 and posted at https://youtu.be/54Gcbvgfz7Q.
Note that there is a noticeable tracking error when we provide

https://youtu.be/54Gcbvgfz7Q


10 20 30 40 50 60 70 80 90
X (m)

40

50

60

Z 
(m

)

Cruise Climb Glide Dive

Desired Trajectory Flight Trajectory

(a) Longitudinal Flight Tasks

−10 0 10 20 30
X (m)

30

35

40

45

50

Y 
(m

)

Desired Trajectory Flight Trajectory

(b) Lateral Flight tasks
Fig. 9: Example longitudinal and lateral trajectories to dis-
play the controller’s tracking performance. (a) A series of
cruising (blue), climbing (orange), gliding (green), diving
(yellow) in 24 seconds with a 3.8m/s follow velocity. (b)
A series of gradual and quick turns in 18 seconds with a
5.3m/s follow velocity.

0 10 20 30 40 50 60 70 80
X (m)

40

45

50

55

60

Z 
(m

)

[-1, -1]
[-1, 2]

[-2, 0]
[1, 0]

[2, 1.5]
Target

No Wind

(a) Simple forward flight tasks.

−15 −10 −5 0 5 10
X (m)

−20

−15

−10

−5

0

5

Y 
(m

)

[0, -2]
[0, 1]

[-1, 0]
[-1, -1]

[1, 0]
[0.7, 0.7]

Target
No Wind

(b) Turning
Fig. 10: Effect of wind on trajectory following. The legend
shows the 2D wind vectors in m/s in the corresponding
plane for each respective trajectory. These vectors are also
visualized in the plot.

a potentially dynamically infeasible target trajectory, but
the FMAV is capable of rejoining the trajectory to some
extent. Fig. 10 shows the controller’s robustness to wind and
aerodynamics randomization, illustrating each wind vector
and fluid coefficient’s influence on the flight path. This
demonstrates that the FMAV is most sensitive to CK , the
Kutta lift coefficient, while still achieving a relatively high
success rate even with other fluid coefficients randomized
by up to a factor of 0.5. The high sensitivity to CK can be
caused by its dominant role in generating lift for bird-scale
flapping flight.

V. CONCLUSION AND FUTURE WORK

In this work, we proposed a novel reinforcement learn-
ing (RL)-based framework for trajectory tracking in bird-
inspired flapping-wing robots. This developed control system
demonstrates the ability to track complex 3D trajectories,
perform agile maneuvers, and adapt to varying aerodynamic
conditions in simulation. By leveraging MuJoCo’s multi-
body dynamic modeling and aerodynamic randomization, we
ensured that the RL policy generalized well to diverse flight
scenarios, including wind disturbances and different aero-
dynamics. Our stability analysis validated that the closed-
loop system was both asymptotically stable and capable of
maintaining stable, periodic joint action patterns.

It is worthwhile mentioning that the hardware platform of
the flapping-wing robot is in the process of design. Our future

0.0 0.1 0.2 0.3 0.4 0.5
Factor Randomization

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Su
cc

es
s R

at
e 

(N
or

m
al

ize
d 

to
 1

)

All Coefficients
CD, blunt
CD, slender
CD, angular

CK

CM

Fig. 11: Effect of randomizing specific fluid coefficients
while others remain at the nominal values in Table II. The
success rate is the fraction of 100 randomly sampled episodes
that were within 3m at the end of the Fig. 10 (a) trajectory.
All coefficients are uniformly randomized in the blue curve.

Fig. 12: Snapshots of three difference aerobatic maneuvers:
(a) A sharp 180◦ turn maneuver in 1.2 s. (b) A loop maneuver
(back-flip) over 3 s. (c) A roll-off-the-bottom maneuver (half
loop pitching down followed by a roll back to level) in 1.8 s.

work will involve experimental validation of the proposed RL
policy once we design and build a flapping-wing robot.

ACKNOWLEDGEMENT

This work is inspired from discussions on dynamics and
control of FMAVs with A. Ramezani and B. Gupta from
Northeastern University. This work is supported in part by
National Science Foundation Grant CMMI-2140650 and in
part by The Robotics and AI Institute. We thank T. Guo
and Z. Li for developing preliminary RL policies related
to this project. We also thank Q. Liao for the technical
discussions and R. Zhang for proofreading. K. Sreenath has
financial interests in the Robotics and AI Institute. He and
the company may benefit from the commercialization of the
results of this research.

REFERENCES

[1] W. Shyy, M. Berg, and D. Ljungqvist, “Flapping and flexible wings
for biological and micro air vehicles,” Progress in Aerospace Sciences,
vol. 35, no. 5, pp. 455–505, 1999.

[2] W. Shyy, H. Aono, S. Chimakurthi, P. Trizila, C.-K. Kang, C. Cesnik,
and H. Liu, “Recent progress in flapping wing aerodynamics and
aeroelasticity,” Progress in Aerospace Sciences, vol. 46, no. 7, pp. 284–
327, 2010.

[3] Y. Bayiz, M. Ghanaatpishe, H. Fathy, and B. Cheng, “Hovering
efficiency comparison of rotary and flapping flight for rigid rectangular
wings via dimensionless multi-objective optimization,” Bioinspiration
& Biomimetics, vol. 13, p. 046002, may 2018.



0 10 20 30
X (m)

−7.5
−5.0
−2.5

0.0
2.5
5.0
7.5

Y 
(m

)

30
35
40
45
50

Z 
(m

)

Desired Trajectory
Start

Fig. 13: An aerobatic trajectory consisting of a loop (orange),
turns (red), and a roll-off-the-bottom maneuver (brown). The
blue sections show cruising and recovery.

[4] H. E. Taha, M. R. Hajj, and A. H. Nayfeh, “Flight dynamics and con-
trol of flapping-wing mavs: a review,” Nonlinear Dynamics, vol. 70,
no. 2, pp. 907–939, 2012.

[5] M. Khosravi and A. B. Novinzadeh, “Comment on “modeling and sim-
ulation of nonlinear dynamics of flapping wing micro air vehicles”,”
AIAA Journal, vol. 57, no. 5, pp. 2195–2197, 2019.

[6] S. B. XUE Dong, ZHU Ziwen, “Key technologies of bird inspired
flapping-wing micro aerial vehicles: Review,” Chinese Journal of
Aeronautics, vol. 45, no. 17, 2024.

[7] J. Murua, R. Palacios, and J. M. R. Graham, “Applications of the
unsteady vortex-lattice method in aircraft aeroelasticity and flight
dynamics,” Progress in Aerospace Sciences, vol. 55, pp. 46–72, 2012.

[8] J. Boutet and G. Dimitriadis, “Unsteady lifting line theory using the
wagner function for the aerodynamic and aeroelastic modeling of 3d
wings,” Aerospace, vol. 5, no. 3, 2018.

[9] C. Urban and R. K. Agarwal, “Validation and optimization of ptera
software: An open-source unsteady flow simulator for flapping wings,”
in AIAA SCITECH 2022 Forum, p. 1967, 2022.

[10] E. Sihite, P. Ghanem, A. Salagame, and A. Ramezani, “Unsteady aero-
dynamic modeling of aerobat using lifting line theory and wagner’s
function,” in IROS 2022, pp. 10493–10500, IEEE, 2022.

[11] S. Kim, M.-S. Kim, S. Kim, and J. Suk, “Design, fabrication, and flight
test of articulated ornithopter,” in Proceedings of the 10th International
Micro Air Vehicles Conference, Melbourne, Australia, pp. 22–23, 2018.

[12] M. F. Bin Abas, A. S. Bin Mohd Rafie, H. Bin Yusoff, and K. A. Bin
Ahmad, “Flapping wing micro-aerial-vehicle: Kinematics, membranes,
and flapping mechanisms of ornithopter and insect flight,” Chinese
Journal of Aeronautics, vol. 29, no. 5, pp. 1159–1177, 2016.

[13] S. Liang, B. Song, and J. Xuan, “Active disturbance rejection attitude
control for a bird-like flapping wing micro air vehicle during automatic
landing,” IEEE Access, vol. 8, pp. 171359–171372, 2020.

[14] J. Z. Torres, J. Davila, and R. Lozano, “Attitude and altitude control
on board of an ornithopter,” in 2016 ICUAS, pp. 1124–1130, 2016.

[15] B. Gupta, Y. Shah, T. Liu, E. Sihite, and A. Ramezani, “Banking
turn of high-dof dynamic morphing wing flight by shifting structure
response using optimization,” arXiv preprint arXiv:2405.05490, 2024.

[16] B. Gupta, A. Dhole, A. Salagame, X. Niu, Y. Xu, K. Venkatesh,
P. Ghanem, I. Mandralis, E. Sihite, and A. Ramezani, “Bounding flight
control of dynamic morphing wings,” in 2024 IEEE AIM, pp. 100–105,
2024.

[17] B. Zhu, Z. Zuo, L. Sun, Y. Zou, and K. Xia, “Model predictive
control for a 3-dof flapping-wing unmanned aerial vehicle with control
constraints,” in 2018 3rd ICARM, pp. 548–553, 2018.

[18] E. Sihite and A. Ramezani, “Enforcing nonholonomic constraints
in aerobat, a roosting flapping wing model,” in 2020 59th IEEE
Conference on Decision and Control (CDC), pp. 5321–5327, 2020.

[19] C. Qian, R. Chen, P. Shen, Y. Fang, J. Yan, and T. Li, “Trajectory gen-
eration and tracking control for flapping wing robot three-dimensional
flight,” IEEE/ASME Transactions on Mechatronics, pp. 1–13, 2024.

[20] A. Ndoye, J. J. Castillo-Zamora, S. Samorah-Laki, R. Miot,
E. Van Ruymbeke, and F. Ruffier, “Vector field aided trajectory

tracking by a 10-gram flapping-wing micro aerial vehicle,” in ICRA
2023, pp. 5379–5385, 2023.

[21] W. H. X. M. L. Zhang and Y. Zou, “Modeling and trajectory tracking
control for flapping-wing micro aerial vehicles,” IEEE/CAA Journal
of Automatica Sinica, vol. 8, no. JAS-2020-0183, p. 148, 2021.

[22] J. Hoff, U. Syed, A. Ramezani, and S. Hutchinson, “Trajectory
planning for a bat-like flapping wing robot,” in IROS 2019, pp. 6800–
6805, 2019.

[23] H. Li, H. Gao, Z. Geng, and Y. Yang, “Predictive control of trajectory
tracking for flapping-wing aircraft based on linear active disturbance
rejection,” Electronics, vol. 13, no. 14, 2024.

[24] R. Zhang, J. Hou, G. Chen, Z. Li, J. Chen, and A. Knoll, “Residual
policy learning facilitates efficient model-free autonomous racing,”
IEEE Robotics and Automation Letters, vol. 7, pp. 11625–11632, 2022.

[25] Y. Song, A. Romero, M. Müller, V. Koltun, and D. Scaramuzza,
“Reaching the limit in autonomous racing: Optimal control versus
reinforcement learning,” Science Robotics, vol. 8, no. 82, p. eadg1462,
2023.

[26] R. Zhang, G. Chen, J. Hou, Z. Li, and A. Knoll, “Pipo: Pol-
icy optimization with permutation-invariant constraint for distributed
multi-robot navigation,” in 2022 IEEE International Conference on
Multisensor Fusion and Integration, pp. 1–7, 2022.

[27] Z. Li, X. B. Peng, P. Abbeel, S. Levine, G. Berseth, and K. Sreenath,
“Reinforcement learning for versatile, dynamic, and robust bipedal
locomotion control,” RSS 2023, 2023.

[28] R. Zhang, D. Zhang, and M. W. Mueller, “Proxfly: Robust control for
close proximity quadcopter flight via residual reinforcement learning,”
arXiv preprint arXiv:2409.13193, 2024.

[29] W. He, T. Meng, X. He, and C. Sun, “Iterative learning control for
a flapping wing micro aerial vehicle under distributed disturbances,”
IEEE Transactions on Cybernetics, vol. 49, no. 4, pp. 1524–1535,
2019.

[30] M. Xiong, Z. Wei, Y. Yang, Q. Chen, and X. Liu, “Lift enhancement
of a butterfly-like flapping wing vehicle by reinforcement learning
algorithm,” Bioinspiration & Biomimetics, vol. 18, p. 046010, may
2023.

[31] Y. E. Bayiz, S.-J. Hsu, A. N. Aguiles, Y. Shade-Alexander, and
B. Cheng, “Experimental learning of a lift-maximizing central pattern
generator for a flapping robotic wing,” in ICRA 2019, pp. 1997–2003,
2019.

[32] J. Lee, S. Ryu, T. Kim, W. Kim, and H. J. Kim, “Learning-based
path tracking control of a flapping-wing micro air vehicle,” in 2018
IEEE/RSJ IROS, pp. 7096–7102, 2018.

[33] Y. Song, L. Weng, and G. Lebby, “Human memory/learning inspired
control method for flapping-wing micro air vehicles,” Journal of
Bionic Engineering, vol. 7, no. 2, pp. 127–133, 2010.

[34] F. Fei, Z. Tu, J. Zhang, and X. Deng, “Learning extreme hummingbird
maneuvers on flapping wing robots,” in ICRA 2019, pp. 109–115,
2019.

[35] Z. Tu, F. Fei, and X. Deng, “Bio-inspired rapid escape and tight body
flip on an at-scale flapping wing hummingbird robot via reinforcement
learning,” IEEE T-RO, vol. 37, no. 5, pp. 1742–1751, 2021.

[36] R. Vaxenburg, I. Siwanowicz, J. Merel, A. A. Robie, C. Morrow,
G. Novati, Z. Stefanidi, G. M. Card, M. B. Reiser, M. M. Botvinick,
K. M. Branson, Y. Tassa, and S. C. Turaga, “Whole-body simulation
of realistic fruit fly locomotion with deep reinforcement learning,”
bioRxiv, 2024.

[37] S. Hong, S. Kim, and D. You, “Control of a fly-mimicking flyer in
complex flow using deep reinforcement learning,” 2021.

[38] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in 2012 IEEE/RSJ IROS, pp. 5026–5033, IEEE,
2012.

[39] Y. Ji, Z. Li, Y. Sun, X. B. Peng, S. Levine, G. Berseth, and K. Sreenath,
“Hierarchical reinforcement learning for precise soccer shooting skills
using a quadrupedal robot,” 2022 IEEE/RSJ IROS, pp. 1479–1486,
2022.

[40] Z. Fu, A. Kumar, J. Malik, and D. Pathak, “Minimizing energy
consumption leads to the emergence of gaits in legged robots,” in
Conference on Robot Learning (CoRL), 2021.

[41] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[42] Z. Li, J. Zeng, A. Thirugnanam, and K. Sreenath, “Bridging model-
based safety and model-free reinforcement learning through system
identification of low dimensional linear models,” in RSS, RSS, 2022.


	Introduction
	Challenges for Control of Bird-inspired FMAVs
	Related Work
	Contribution

	Problem Description
	Platform Overview
	Dynamical Model
	Simulation

	RL-Based Trajectory Tracking Control
	Control Framework
	Target Trajectories
	State and Action Spaces
	Rewards
	Dynamics and Aerodynamic Force Randomization
	Episode Design

	Results
	Stability Analysis of the Flight Controller
	System Identification
	Stability

	Phase portraits of Flying Tasks
	Trajectory Tracking Performance

	Conclusion and Future Work
	References

