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Abstract— Safety is one of the fundamental challenges in
control theory. Recently, multi-step optimal control problems
for discrete-time dynamical systems were formulated to en-
force stability, while subject to input constraints as well as
safety-critical requirements using discrete-time control barrier
functions within a model predictive control (MPC) framework.
Existing work usually focus on the feasibility or the safety for
the optimization problem, and the majority of the existing work
restrict the discussions to relative-degree one control barrier
functions. Additionally, the real-time computation is challenging
when a large horizon is considered in the MPC problem for
relative-degree one or high-order control barrier functions. In
this paper, we propose a framework that solves the safety-
critical MPC problem in an iterative optimization, which is
applicable for any relative-degree control barrier functions. In
the proposed formulation, the nonlinear system dynamics as
well as the safety constraints modeled as discrete-time high-
order control barrier functions (DHOCBF) are linearized at
each time step. Our formulation is generally valid for any
control barrier function with an arbitrary relative-degree.
The advantages of fast computational performance with safety
guarantee are analyzed and validated with numerical results.

I. INTRODUCTION

A. Motivation

Safety-critical optimal control is a central problem in
robotics. For example, reaching a goal while avoiding ob-
stacles and minimizing energy can be formulated as a
constrained optimal control problem by using continuous-
time control barrier functions (CBFs) [1], [2]. By dividing
the timeline into small intervals, the problem is reduced to
a (possibly large) number of quadratic programs, which can
be solved at real-time speeds. However, this approach can be
too aggressive due to the lack of predicting ahead.

Model predictive control (MPC) with CBFs [3] considers
the safety problem in the discrete-time domain, and provides
a smooth control policy as it involves future state information
along a receding horizon. However, the computational time
is relatively large and increases dramatically with a larger
horizon, since the optimization itself is usually nonlinear
and non-convex. An additional issue of this nonlinear model
predictive formulation is the feasibility of the optimization.
For CBFs with relative-degree one, relaxation techniques

∗ Authors contributed equally.
This work was supported in part by the NSF under grants IIS-2024606

and CMMI-1931853.
1S. Liu and C. Belta are with the department of Mechanical Engi-

neering, Boston University, Brookline, MA, 02215, USA {liushuo,
cbelta}@bu.edu. 2J. Zeng and K. Sreenath are with the Uni-
versity of California, Berkeley, CA, 94720, USA {zengjunsjtu,
koushils}@berkeley.edu

Implementation code is released on https://github.com/
ShockLeo/Iterative-MPC-DHOCBF.

have been introduced in [4]. In this paper, we address
the above challenges with a proposed convex MPC with
linearized, discrete-time CBFs, under an iterative approach.
In contrast with the real-time iteration (RTI) approach in-
troduced in [5], which solves the problem through iterative
Newton steps, our approach solves the optimization problem
formulated by a convex MPC iteratively for each time step.
We show that the proposed approach can significantly reduce
the computational time, compared to the state of the art
introduced in [4], even for CBFs with high relative-degree,
without sacrificing the controller performance. The feasibllity
rate of our proposed method also outperforms that of the
baseline method in [4] for large horizon lengths.

B. Related work

1) Model Predictive Control (MPC): MPC is widely used
in modern control systems, such as controller design in
robotic manipulation and locomotion [6], [7] to obtain a
control strategy as a solution to an optimization problem.
Stability was achieved in [8] by incorporating discrete-time
control Lyapunov functions (DCLFs) into a general MPC-
based optimization problem to realize real-time control on a
robotic system with limited computational resources. More
and more recent work like [9] emphasizes safety in robot
design and deployment since it is an important criterion for
real-world tasks. Some works consider safety criteria through
the introduction of additional repelling functions [1], [10]
while some works regard obstacle avoidance as one concrete
scenario in terms of safety criteria for robots [11]–[13].
Those safety criteria are usually formulated as constraints in
optimization problems. This paper can be seen in the context
of MPC with safety constraints.

2) Continuous-Time CBFs: It has recently been shown
that to stabilize an affine control system while also satisfying
safety constraints and control limitations, CBFs can be
unified with control Lyapunov functions (CLFs) to form
a sequence of single-step optimization programs [1], [2],
[14], [15]. If the cost is quadratic, the optimizations are
quadratic programs (QP), and the solutions can be deployed
in real time [1], [16]. Adaptive, robust and stochastic ver-
sions of safety-critical control with CBFs were introduced
in [17]–[21]. For safety constraints expressed using functions
with high relative degree with respect to the dynamics of
the system, exponential CBFs [22] and high-order CBFs
(HOCBFs) [23]–[25] were proposed.

3) Discrete-Time CBFs: Discrete-time CBFs (DCBFs)
were introduced in [26] as a means to enable safety-critical
control for discrete-time systems. They were used in a
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nonlinear MPC (NMPC) framework to create NMPC-DCBF
[3], wherein the DCBF constraint was enforced through
a predictive horizon. This method was also utilised in a
multi-layer control framework in [27], where DCBFs with
longer horizons were considered in the MPC problem serving
as a mid-level controller to guarantee safety. Generalized
discrete-time CBFs (GCBFs) and discrete-time high-order
CBFs (DHOCBFs) were proposed in [28] and [29] respec-
tively, where the DCBF constraint only acted on the first
time-step, i.e., a single-step constraint. MPC with DCBF has
been used in various fields, such as autonomous driving [30]
and legged robotics [31]. For the work above, the CBF
constraints are either limited to be activated at the first time-
step [26], [28], [29] to improve the optimization feasibility at
the cost of sacrificing the safety performance, or for multiple
or all steps [27], [30], [31] with additional performance
optimization from other modules, such as multi-layer con-
trol [27], [30] or planning [31], which needs to specified for
different platforms. A decay-rate relaxing technique [32] was
introduced for NMPC with DCBF [4] for all time-steps to
enhance the safety and feasibility at the same time, but the
computation itself is overall still nonlinear and non-convex
which could be computationally slow for large horizons and
nonlinear dynamical systems, and the discussion in [4] is
limited to relative-degree one. In this paper, we generalize
relaxing technique for DHOCBF and largely optimize the
computational time compared to all existing work.

C. Contributions

We propose a novel approach to the NMPC with discrete-
time CBFs that is significantly faster than existing ap-
proaches. In particular, the contributions are as follows:

• We present a model predictive control strategy for
safety-critical tasks, where the safety-critical constraints
can be enforced by DHOCBFs. The decay rate in each
constraint can be relaxed to enhance the feasibility in
optimization and to ensure forward invariance of the
intersection of a series of safety sets.

• We propose an optimal control framework for guaran-
teeing safety, where the DHOCBF constraints as well
as the system dynamics are linearized at each iteration,
and considered as constraints in a convex optimization
solved iteratively.

• We show through numerical examples that the proposed
framework is significantly faster than existing methods,
without sacrificing safety and feasibility.

II. PRELIMINARIES

In this section, we introduce some definitions and results
on CBF and MPC.

A. Discrete-Time High-Order Control Barrier Function
(DHOCBF)

In this work, safety is defined as forward invariance of a
set C, i.e., a system is said to be safe if it stays in C for all

time, given that it is initialized in C. We consider the set C
as the superlevel set of a discrete-time function h : Rn → R:

C := {xt ∈ Rn : h(xt) ≥ 0}. (1)

We consider a discrete-time control system in the form

xt+1 = f(xt,ut), (2)

where xt ∈ X ⊂ Rn represents the state of system (2) at
time step t ∈ N,ut ∈ U ⊂ Rq is the control input, and
function f is locally Lipschitz.

Definition 1 (Relative degree [33]). The output yt = h(xt)
of system (2) is said to have relative degree m if

yt+i = h(f̄i−1(f(xt,ut))), i ∈ {1, 2, . . . ,m},

s.t.
∂yt+m

∂ut
̸= 0q,

∂yt+i

∂ut
= 0q, i ∈ {1, 2, . . . ,m− 1},

(3)

i.e., m is the number of steps (delay) in the output yt in
order for the control input ut to appear.

In the above definition, we use f̄(xt) to denote the
uncontrolled state dynamics f(xt, 0). The subscript i of
function f̄(·) denotes the i-times recursive compositions of
f̄(·), i.e., f̄i(xt) = f̄(f̄(. . . , f̄︸ ︷︷ ︸(f̄0(xt))))

i-times

with f̄0(xt) = xt.

We assume that h(xt) has relative degree m with respect
to system (2) based on Def. 1. Starting with ψ0(xt) := h(xt),
we define a sequence of discrete-time functions ψi : Rn →
R, i = 1, . . . ,m as:

ψi(xt) := △ψi−1(xt,ut) + αi(ψi−1(xt)), (4)

where △ψi−1(xt,ut) := ψi−1(xt+1) − ψi−1(xt), and
αi(·) denotes the ith class κ function which satisfies
αi(ψi−1(xt)) ≤ ψi−1(xt) for i = 1, . . . ,m. A sequence
of sets Ci is defined based on (4) as

Ci := {xt ∈ Rn : ψi(xt) ≥ 0}, i = {0, . . . ,m− 1}. (5)

Definition 2 (DHOCBF [29]). Let ψi(xt), i ∈ {1, . . . ,m}
be defined by (4) and Ci, i ∈ {0, . . . ,m− 1} be defined by
(5). A function h : Rn → R is a Discrete-Time High-Order
Control Barrier Function (DHOCBF) with relative degree m
for system (2) if there exist ψm(xt) and Ci such that

ψm(xt) ≥ 0, ∀xt ∈ C0 ∩ · · · ∩ Cm−1. (6)

Theorem 1 (Safety Guarantee [29]). Given a DHOCBF
h(xt) from Def. 2 with corresponding sets C0, . . . , Cm−1

defined by (5), if x0 ∈ C0 ∩ · · · ∩ Cm−1, then any Lipschitz
controller ut that satisfies the constraint in (6), ∀t ≥ 0
renders C0 ∩ · · · ∩ Cm−1 forward invariant for system (2),
i.e.,xt ∈ C0 ∩ · · · ∩ Cm−1,∀t ≥ 0.

Remark 1. The function ψi(xt) in (4) is called a ith order
discrete-time control barrier function (DCBF) in this paper.
Since satisfying the ith order DCBF constraint (ψi(xt) ≥
0) is a sufficient condition for rendering C0 ∩ · · · ∩ Ci−1

forward invariant for system (2) as shown above, it is not
necessary to formulate DCBF constraints up to mth order as
(6) if the control input ut could be involved in some optimal



control problem, which allows us to choose an appropriate
order for the DCBF constraint to reduce the computation. In
other words, the highest order for DCBF could be mcbf with
mcbf ≤ m. We can simply define a ith order DCBF ψi(xt)
in (4) as

ψi(xt) := △ψi−1(xt,ut) + γiψi−1(xt), (7)

where 0 < γi ≤ 1, i ∈ {1, . . . ,mcbf}.

The expression in (7) follows the format of the first order
DCBF proposed in [26] and could be used to define a
DHOCBF with arbitrary relative degree.

B. Model Predictive Control

Consider the problem of regulating to a target state xr for
the discrete-time system (2) while making sure that safety is
guaranteed by ensuring ψ0(xt) = h(xt) ≥ 0. The following
optimal control problem takes future N states into account
as prediction at each time step t:

NMPC-DCBF:

min
Ut,Ωt

p(xt,N ) +

N−1∑
k=0

q(xt,k,ut,k, ωt,k) (8a)

s.t. xt,k+1 = f(xt,k,ut,k), k={0, . . . , N−1} (8b)
ut,k ∈ U ,xt,k ∈ X , ωt,k ∈ R, k={0, . . . , N−1} (8c)
h(xt,k+1) ≥ ωt,k(1− γ)h(xt,k), 0 < γ ≤ 1, (8d)
k = {0, . . . , N−1},

where xt,k+1 denotes the state at time step k + 1 predicted
at time step t obtained by applying the input vector ut,k

to the state xt,k. In (8a), q(·) and p(·) denote stage and
terminal costs, respectively, and ωt,k is a slack variable.
The discrete-time dynamics is represented by (8b) and the
constraints of state and control input along the horizon are
captured by (8c). The DCBF constraint in (8d) is proposed
in [26] and is designed to ensure the forward invariance
of the set C based on (1). The above formulation was first
proposed in [3], and then later generalized in [4], where the
decay rate (1−γ) of the CBF was relaxed by slack variable
ωt,k to enhance safety and feasibility.

The optimal solution to (8) at time t is U∗
t =

[u∗
t,0, . . . ,u

∗
t,N−1] and Ω∗

t = [ω∗
t,0, . . . , ω

∗
t,N−1]. The first

element of U∗
t is applied to (2) as

xt+1 = f(xt,u
∗
t,0) (9)

to get the new state xt+1. The constrained finite-time optimal
control problem (8) is solved at time step t+1, and all future
time steps based on the new state xt+1, yielding a safety-
critical receding horizon control strategy.

III. ITERATIVE CONVEX MPC WITH DHOCBF

In this section, we present an iterative convex MPC for
DCBF, which works for general DHOCBFs defined in Sec.
II-A.

Algorithm 1 iMPC-DHOCBF
Input: System dynamics (2), candidate CBF constraint, obstacle

configurations, initial state x(0).
Output: Safety-critical optimal control for obstacle avoidance.

1: Set initial guess Ū0
0 = 0 at t = 0.

2: Propagate with system dynamics to get initial guess of states
X̄0

0 from initial state x(0).
3: for t ≤ tsim − 1 do
4: Initialize j = 0.
5: while Iteration j (not converged OR j < jmax) do
6: Linearize system dynamics / constraints with X̄j

t , Ū
j
t .

7: Solve a convex finite-time constrained optimal control
problem (CFTOC) with linearized dynamics / constraints
and get optimal values of states and inputs X∗,j

t , U∗,j
t .

8: X̄j+1
t = X∗,j

t , Ūj+1
t = U∗,j

t , j = j + 1
9: end while

10: Extract optimized states and inputs X∗
t = X∗,j

t ,U∗
t = U∗,j

t

from last iteration and extract u∗
t,0 from U∗

t .
11: Apply u∗

t,0 with respect to system dynamics (2) to get
xt+1 = f(xt,u

∗
t,0), and record x(t+ 1) = xt+1.

12: Update Ū0
t+1 with U∗

t and propagate to calculate X̄0
t+1.

13: t = t+ 1.
14: end for
15: return closed-loop trajectory [x(0), . . . ,x(tsim)]

A. Iterative Convex Optimization

The algorithm described in Alg. 1 contains an iterative
optimization at each time step t, which is denoted as
iterative MPC-DHOCBF (iMPC-DHOCBF). Our iterative
optimization problem contains three parts for each iteration
j: (1) solve a convex finite-time optimal control (CFTOC)
problem with linearized dynamics and DHOCBF, (2) check
convergence criteria, (3) update state and input vectors for
next iteration. Notice that the open-loop trajectory with
updated states X̄j

t = [x̄j
t,0, . . . , x̄

j
t,N−1] and inputs Ūj

t =

[ūj
t,0, . . . , ū

j
t,N−1] is passed between iterations, which al-

lows iterative linearization for both system dynamics and
DHOCBF locally. As discussed before, “high-order” implies
that the relative degree should be larger or equal to one.

The iteration is finished when the convergence error func-
tion e(X∗,j

t ,U∗,j
t , X̄j

t , Ū
j
t ) is within a user-defined normal-

ized convergence criteria, where X∗,j
t = [x∗,j

t,0 , . . . ,x
∗,j
t,N ],

U∗,j
t = [u∗,j

t,0 , . . . ,u
∗,j
t,N−1] represent optimized states and

inputs at iteration j. To restrict the number of iterations, we
limit j < jmax, where jmax denotes the maximum numbers
of iterations. Therefore, the iterative optimization stops when
the cost function reaches a local optimal minimum, whose
iteration number is denoted as jt,conv. The optimized states
X∗

t and inputs U∗
t are passed to the iMPC-DHOCBF for-

mulation for the next time instant. At each time, we record
the updated state propagated by the system dynamics with a
given discretization time, which allows to extract the output
closed-loop trajectory with our proposed iMPC-DHOCBF.

B. Linearization of Dynamics

At iteration j, an improved vector uj
t,k is considered by

linearizing the system around x̄j
t,k, ū

j
t,k:

xj
t,k+1−x̄j

t,k+1=A
j(xj

t,k−x̄j
t,k) +Bj(uj

t,k−ūj
t,k), (10)



where 0 ≤ j < jmax; k and j represent open-loop time step
and iteration indices, respectively. We also have

Aj = Dxf(x̄
j
t,k, ū

j
t,k), B

j = Duf(x̄
j
t,k, ū

j
t,k), (11)

where Dx and Du denote the Jacobian of the system dynam-
ics f(x,u) with respect to the state x and the input u. This
approach allows to linearize the system at (x̄j

t,k, ū
j
t,k) locally

between iterations. The convex system dynamics constraints
are provided in (10) since all nominal vectors (x̄j

t,k, ū
j
t,k) in

current iteration are constant and constructed from previous
iteration j − 1.

C. Linearization of DCBF & DHOCBF

In this section, we show how to linearize the DCBF up
to the highest order. At iteration j, in order to linearize
h(xj

t,k), an explicit line is projected in the state space to
the nearest point x̃j

t,k on the boundary of the obstacle from
each state x̄j

t,k. Note that x̄j
t,k is the nominal state vector

from iteration j−1 for the linearization at iteration j, which
means x̄j

t,k = xj−1
t,k . The tangent line passing through the

nearest point x̃j
t,k is denoted as h∥(x

j
t,k|x̃

j
t,k). This allows us

to define a linearized safe set by h∥(x
j
t,k|x̃

j
t,k) ≥ 0, ∀t ∈ N

as shown in Fig. 1 by the green region.

Remark 2. Note that x̃j
t,k represents the optimized value

of the minimum distance problem with distance function
h(·) between x̄j

t,k and safe set C. For common smooth and
differentiable CBFs, the expression of x̃j

t,k as a function of
x̄j
t,k is explicit [34], [35]. For example, when h(·) describes

a l2-norm function with the obstacle being a circular shape,
x̃j
t,k is exactly the intersection point between x̄j

t,k and the
center of the obstacle. Notice that x̃j

t,k could be implicit
for general elliptic calculations [36], but it could still be
numerically approximated as the values of x̄j

t,k known at
iteration j before the linearization.

The relative degree of h∥(x
j
t,k|x̃

j
t,k) with respect to system

(2) is still m when the relative degree of h(xj
t,k) is m.

Thus, in order to guarantee safety with forward invariance
based on Thm. 1 and Rem. 1, two sufficient conditions need
to be satisfied: (1) the sequence of linearized DHOCBF
ψ̃0(·), . . . , ψ̃mcbf−1(·) is larger or equal to zero at the initial
condition xt, and (2) the highest-order DCBF constraint
ψ̃mcbf(x) ≥ 0 is always satisfied, where ψ̃i(·) is defined as:

ψ̃0(x
j
t,k) :=h∥(x

j
t,k|x̃

j
t,k)

ψ̃i(x
j
t,k) :=ψ̃i−1(x

j
t,k+1)−ψ̃i−1(x

j
t,k)+γiψ̃i−1(x

j
t,k).

(12)

Here, we have 0 < γi ≤ 1, i ∈ {1, . . . ,mcbf}, and mcbf ≤ m
(as in (7)).

Remark 3. From Rem. 1, it follows that that mcbf is not
necessarily equal to m. A detailed discussion on this can be
found in [4], [28].

An important issue is feasibility. It is possible that
ψi(x

0
t,k) ≥ 0, 1 ≤ i ≤ mcbf − 1, with k ∈ {0, . . . , N}

is not satisifed since the linearized DHOCBF functions

Fig. 1: Linearization of DHOCBF: h∥(x
j
t,k|x̃

j
t,k) ≥ 0 represents

the linearized safe set locally and is colored in green. Note that
h∥(x

j
t,k|x̃

j
t,k) ≥ 0 guarantees h(xj

t,k) ≥ 0 (colored in blue plus
green), which ensures collision avoidance (outside the grey region).

ψ̃0(·), . . . , ψ̃mcbf−1(·) are more conservative than the original
forms ψ0(·), . . . , ψmcbf−1(·). This problem can occur when
the horizon is too large, or the linearization is too conser-
vative. In order to handle this issue, we introduce a slack
variable ωj

t,k,i with a corresponding decay rate (1− γi):

ψ̃i−1(x
j
t,k+1) ≥ ωj

t,k,i(1− γi)ψ̃i−1(x
j
t,k), ω

j
t,k,i ∈ R, (13)

where i ∈ {1, . . . ,mcbf}. The slack variable ωj
t,k,i is se-

lected by minimizing a cost function term to satisfy DCBF
constraints at initial condition at any time step [4].

Another challenge induced by the DCBF linearization is
that the constraints in (13) could be non-convex, since now
ωj
t,k,i and xj

t,k are both optimization variables. Note that
ψ̃0(x

j
t,0) are constant, thus we can only place ωj

t,k,i in front
of ψ̃0(x

j
t,0) and move the other optimization variables to the

other side of the inequalities. This motivates us to provide the
following form for reformulating (13) as convex constraints:

ψ̃i−1(x
j
t,k) +

i∑
ν=1

Zν,i(1− γi)
kψ̃0(x

j
t,ν) ≥

ωj
t,k,iZ0,i(1− γi)

kψ̃0(x
j
t,0),

j ≤ jmax ∈ N+, i ∈ {1, . . . ,mcbf}, ωj
t,k,i ∈ R.

(14)

In the above, Zν,i is a constant that can be obtained recur-
sively by reformulating ψ̃i−1(·) back to ψ̃0(·) given ν ∈
{0, .., i}. We define Zν,i as follows. When 2 ≤ i, ν ≤ i− 2,
we have

Zν,i =

lmax∑
l=1

[(γζ1 − 1)(γζ2 − 1) · · · (γζi−ν−1
− 1)]l,

ζ1 < ζ2 < · · · < ζi−ν−1, ζs ∈ {1, 2, . . . , i− 1},

(15)

where [·]l denotes the lth combination of the product of the
elements in parenthesis, therefore we have lmax =

(
i−1

i−ν−1

)
.

ζs denote all ζ in (15). For the case ν = i− 1, if 2 ≤ i, we
define Zν,i = −1; if i = 1, we define Zν,i = 1. Beside that,
we define Zν,i = 0 for the case ν = i.

Remark 4. The decay rate in (14) used by the iMPC-
DHOCBF is partially relaxed compared to the one in (13)
due to the requirement of the linearization. This can affect
the feasibility of the optimization.



D. CFTOC Problem

In Secs. III-B and III-C, we have illustrated the lineariza-
tion of system dynamics as well as the safety constraints
with DHOCBF. This allows us to consider them as con-
straints into a convex MPC formulation at each iteration,
which we call convex finite-time constrained optimization
control (CFTOC). This is solved at iteration j with op-
timization variables Uj

t = [uj
t,0, . . . ,u

j
t,N−1] and Ωj

t,i =

[ωj
t,0,i, . . . , ω

j
t,N,i], where i ∈ {1, . . . ,mcbf}.

CFTOC of iMPC-DHOCBF at iteration j:

min
U

j
t ,Ω

j
t,1,...,Ω

j
t,mcbf

p(xj
t,N ) +

N−1∑
k=0

q(xj
t,k,u

j
t,k, ω

j
t,k,i) (16a)

s.t. xj
t,k+1−x̄j

t,k+1=A
j(xj

t,k − x̄j
t,k)+B

j(uj
t,k − ūj

t,k), (16b)

uj
t,k ∈ U , xj

t,k ∈ X , ωj
t,k,i ∈ R, (16c)

ψ̃i−1(x
j
t,k) +

i∑
ν=1

Zν,i(1− γi)
kψ̃0(x

j
t,ν) ≥

ωj
t,k,iZ0,i(1− γi)

kψ̃0(x
j
t,0), (16d)

In the CFTOC, the linearized dynamics constraints in (10)
and the linearized DHOCBF constraints in (14) are enforced
with constraints (16b) and (16d) at each open loop time
step k ∈ {0, . . . , N − 1}. The state and input constraints are
considered in (16c). The slack variables are unconstrained
as the goal of the optimization itself is to minimize the
deviation from the nominal DHOCBF constraints with
cost term q(·, ·, ωj

t,k,i), while ensuring feasibility of the
optimization, as discussed in [32]. Note that, for ensuring
the safety guarantee established by the DHOCBF, the
constraints (16d) are enforced with i ∈ {0, . . . ,mcbf}, where
Zν,i ∈ R is as defined in (14) with ν ∈ {0, .., i}. The
optimal decision variables of (16) at iteration j is a list of
control input vectors as U∗,j

t = [u∗,j
t,0 , . . . ,u

∗,j
t,N−1] and a list

of slack variable vectors as Ω∗,j
t,i = [ω∗,j

t,0,i, . . . , ω
∗,j
t,N−1,i].

The CFTOC is solved iteratively in our proposed iMPC-
DHOCBF and the solution can be extracted once the
convergence criteria or the maximum iteration number jmax
is reached, as shown in Alg. 1.

IV. CASE STUDY

In this section, we present numerical results to validate
our proposed approach using a unicycle model. We provide a
performance comparison with the baseline NMPC-DHOCBF
approach. The NMPC-DHOCBF is simply extended by using
relaxed DHOCBF based on (8d) in NMPC-DCBF (8), as
discussed in [4, Rem. 4].

A. Numerical Setup

1) System Dynamics: Consider a discrete-time unicycle
model in the form

xt+1−xt
yt+1−yt
θt+1−θt
vt+1−vt

=


vt cos(θt)∆t
vt sin(θt)∆t

0
0

+


0 0
0 0
∆t 0
0 ∆t

[
u1,t
u2,t

]
, (17)

where xt = [xt, yt, θt, vt]
T captures the 2-D location, head-

ing angle, and linear speed; ut = [u1,t, u2,t]
T represents

angular velocity (u1) and linear acceleration (u2), respec-
tively. The system is discretized with ∆t = 0.1. System (17)
is subject to the following state and input constraints:

X = {xt ∈ R4 : −10 · I4×1 ≤ xt ≤ 10 · I4×1},
U = {ut ∈ R2 : [−7,−5]T ≤ ut ≤ [7, 5]T }.

(18)

2) System Configuration: The initial state is [−3, 0, 0, 0]T

and the target state is xr = [3, 0.01, 0, 0]T , which are marked
as blue and red diamonds in Fig. 2. The circular obstacle
is centered at (0, 0) with r = 1,, which is displayed in
orange. The other reference vectors are ur = [0, 0]T and
ωr = [1, 1]T . We use the offset y = 0.01m in xr to prevent
singularity of the optimization problem.

3) DHOCBF: As a candidate DHOCBF function ψ0(xt),
we choose a quadratic distance function for circular obstacle
avoidance h(xt) = (xt − x0)

2 + (yt − y0)
2 − r2, where

(x0, y0) and r denote the obstacle center location and radius,
respectively. The linearized DHOCBF ψ̃0(x

j
t,k) in (12) is

defined as ψ̃0(x
j
t,k) := h∥(x

j
t,k|x̃

j
t,k), with

h∥(x
j
t,k|x̃

j
t,k) = (x̃jt,k − x0)x

j
t,k + (ỹjt,k − y0)y

j
t,k

−(r2 − x20 − y20 + x̃jt,kx0 + ỹjt,ky0),
(19)

where h∥(x
j
t,k|x̃

j
t,k) is the linearized boundary, whose rel-

ative degree is 2; (x̃jt,k, ỹ
j
t,k) denotes the tangent point of

the circular boundary h(xt). From (15), we have Z0,2 =
γ1 − 1, Z1,2 = −1, Z0,1 = 1, Z2,2 = Z1,1 = 0.

4) MPC Design: The cost function of the MPC problem
consists of stage cost q(xj

t,k,u
j
t,k, ω

j
t,k) =

∑N−1
k=0 (||xj

t,k −
xr||2Q + ||uj

t,k − ur||2R + ||ωj
t,k − ωr||2S) and terminal cost

p(xj
t,N ) = ||xj

t,N − xr||2P , where Q = P = 10 · I4, R = I2
and S = 1000 · I2.

5) Convergence Criteria: We use the following absolute
and relative convergence functions as convergence criteria
mentioned in Alg. 1:

eabs(X
∗,j
t ,U∗,j

t ) = ||X∗,j − X̄∗,j ||
erel(X

∗,j
t ,U∗,j

t , X̄j
t , Ū

j
t ) = ||X∗,j − X̄∗,j ||/||X̄∗,j ||.

(20)

The iterative optimization stops when eabs < εabs or erel <
εrel, where εabs = 10−4, εrel = 10−2 and the maximum
iteration number is set as jmax = 1000.

To make a fair comparison with NMPC-DHOCBF, the
hyperparameters P,Q,R, S remain unchanged for all setups.

6) Solver Configurations and CPU Specs.: For iMPC-
DHOCBF, we used OSQP [37] to solve the convex opti-
mizations at all iterations. The baseline approach NMPC-
DHOCBF is open-source, and was solved using IPOPT [38]
with the modeling language Yalmip [39]. We used a Win-
dows desktop with Intel Core i7-8700 (CPU 3.2 GHz)
running Matlab for all computations.

B. Performance

1) Iterative Convergence: The iterative convergence is
shown in Figs. 2a, 4 and 3. Fig. 2a shows the closed-loop



(a) iMPC-DHOCBF when N = 24,
γ1 = γ2 = 0.4.

(b) iMPC-DHOCBF with mcbf = 2. (c) NMPC-DHOCBF with mcbf = 2. (d) iMPC-DHOCBF and NMPC-
DHOCBF with mcbf = 1.

Fig. 2: Open-loop and closed-loop trajectories with controllers iMPC-DHOCBF (solid lines) and NMPC-DHOCBF (dashed lines): (a)
several open-loop trajectories at different iterations predicted at t = 6 and one closed-loop trajectory with controller iMPC-DHOCBF;
(b) closed-loop trajectories with controller iMPC-DHOCBF with different choices of N and γ; (c) closed-loop trajectories with controller
NMPC-DHOCBF with different choices of N and γ. Note that two trajectories stop at t = 13 and t = 33 because of infeasibility; (d)
closed-loop trajectories with controllers iMPC-DHOCBF and NMPC-DHOCBF with mcbf = 1. Both methods work well for safety-critical
navigation.

(a) Location x (b) Location y (c) Orientation θ (d) Speed v

Fig. 3: Iterative convergence of all states at converged iteration j6,conv = 32 with N = 24,mcbf = 2, γ1 = γ2 = 0.4. iMPC does help to
optimize the cost function to reach local optimal minimum.

trajectory (the black line) generated by solving the iMPC-
DHOCBF until the converged iteration jt,conv from t = 0
to t = tsim = 100 and open-loop iteratively converging
trajectories (colored lines) at different iterations at t = 6.
Fig. 3 presents more details on the iterative convergence of
states at different iterations at t = 6 with number of iterations
jt,conv = 32. We note that, after around 10 iterations, the
converging lines for the states (red lines) nearly overlap
with the converged line (blue line) in Fig. 3. This verifies
the relations of the converging trajectory (red line) and the
converged trajectory (blue line) in Fig. 2a. The optimization
is shown to converge at iteration jt,conv at time step t
for different hyperparameters γ under specific convergence
criteria (20), shown in Fig. 4. We can see that for the first
15 time steps the iMPC-DHOCBF triggers more iterations to
drive the system to avoid the obstacle than time steps after 20
where the system already passes the obstacle. The maximum
converged iteration jt,conv is 1000 at time step t = 2 in Fig.
4d with γ1 = γ2 = 0.6, which reveals that the peak of the
converged iteration over time increases if we choose larger γ.
For the majority of the time-steps, the iterative optimization
converges within 100 iterations (jt,conv < 100).

2) Convergence with Different Hyperparameters: Fig. 2b,
2c and 2d show the closed-loop trajectories generated by
solving iMPC-DHOCBF (solid lines) and NMPC-DHOCBF
(dashed lines) at converged iteration jt,conv from t = 0
to t = tsim = 45 with different hyperparameters. Both
controllers show good performance on obstacle avoidance.

Based on black, red, blue and magenta lines with the highest
order of CBF constraint mcbf = 2 in Fig. 2b and 2c, as
γ1, γ2 become smaller, the system tends to turn further away
from the obstacle when it is getting closer to obstacle, which
indicates a safer control strategy. From the lines in Fig. 2d
where mcbf = 1, we can see that the system can still safely
navigate around the obstacle, although it turns away from the
obstacle later than when having one more CBF constraint in
Fig. 2b and 2c, indicating that having CBF constraints up to
the relative degree enhances safety. The blue and magenta
dashed lines in Fig. 2c stop at t = 33 and t = 13 with N =
16 as infeasibility happens, which shows that a large horizon
is needed to generate complete closed-loop trajectories for
some hyperparameters by NMPC-DHOCBF, while iMPC-
DHOCBF shows less reliance on selection of horizon since
it can generate complete closed-loop trajectories with both
N = 16 and N = 24, as shown in Fig. 2b.

3) Computation Time: In order to compare computational
times between our proposed iMPC-DHOCBF and the base-
line NMPC-DHOCBF, 1000 independent randomized safe
states are generated in state constraint X in (18). To make
a fair comparison, both approaches use the same N and
mcbf and the computational time and feasibility are evaluated
at those randomized sample states. The distributions of the
computation times and infeasibility rates in Tab. I and Tab.
II correspond to generating one time-step trajectories. The
mean and standard deviation of computation times increase
if the horizon N or mcbf become larger for NMPC-DHOCBF



(a) γ1 = 0.4, γ2 = 0.4 (b) γ1 = 0.4, γ2 = 0.6 (c) γ1 = 0.6, γ2 = 0.4 (d) γ1 = 0.6, γ2 = 0.6

Fig. 4: Number of iterations jt,conv at each time-step using controller iMPC-DHOCBF with different values of hyperparameters γ1, γ2 with
N = 24,mcbf = 2. We can observe that, for almost all time-steps, the iterative optimization converges within 100 iteraitons (jt,conv < 102),
which is affected very little with respect to hyperparameters.

Approaches N = 4 N = 8 N = 12 N = 16 N = 20 N = 24
NMPC-DHOCBF

(mcbf = 2)
mean / std (s) 3.687± 6.360 23.882± 17.988 27.329± 20.115 28.953± 22.058 30.970± 23.564 29.929± 22.105

infeas. rate 5.8% 27.5% 21.1% 16.4% 14.5% 14.4%
NMPC-DHOCBF

(mcbf = 1)
mean / std (s) 2.933± 4.678 19.077± 14.024 20.418± 15.401 22.749± 17.039 24.053± 17.811 25.365± 18.211

infeas. rate 6.3% 13.9% 13.0% 14.6% 13.8% 15.4%
iMPC-DHOCBF

(mcbf = 2)
mean / std (s) 0.135± 0.294 0.104± 0.242 0.102± 0.217 0.131± 0.301 0.165± 0.400 0.135± 0.274

infeas. rate 6.3% 8.0% 10.4% 10.9% 10.9% 10.2%
iMPC-DHOCBF

(mcbf = 1)
mean / std (s) 0.131± 0.286 0.114± 0.260 0.109± 0.237 0.137± 0.316 0.173± 0.414 0.152± 0.317

infeas. rate 6.3% 8.0% 10.4% 10.9% 10.9% 11.1%

TABLE I: Statistical benchmark for computation time and feasibility between NMPC-DHOCBF and iMPC-DHOCBF with randomized
states. The target position is shared among four approaches and the hyperparameters are fixed as γ1 = γ2 = 0.4 for all random scenarios.

Approaches N = 4 N = 8 N = 12 N = 16 N = 20 N = 24
NMPC-DHOCBF

(mcbf = 2)
mean / std (s) 3.744± 6.445 28.779± 20.755 31.319± 21.921 33.678± 25.328 36.430± 26.959 39.543± 29.941

infeas. rate 5.6% 28.0% 20.9% 16.8% 17.0% 14.6%
NMPC-DHOCBF

(mcbf = 1)
mean / std (s) 3.032± 4.536 21.414± 16.518 23.121± 17.544 24.011± 17.711 26.599± 19.480 29.671± 20.026

infeas. rate 6.4% 17.0% 15.2% 15.5% 16.7% 13.2%
iMPC-DHOCBF

(mcbf = 2)
mean / std (s) 0.158± 0.326 0.134± 0.279 0.163± 0.353 0.163± 0.373 0.184± 0.398 0.164± 0.344

infeas. rate 6.1% 8.0% 10.2% 10.7% 10.8% 10.8%
iMPC-DHOCBF

(mcbf = 1)
mean / std (s) 0.167± 0.340 0.139± 0.291 0.170± 0.362 0.170± 0.379 0.201± 0.435 0.176± 0.378

infeas. rate 6.1% 8.0% 10.2% 10.7% 10.8% 10.8%

TABLE II: Statistical benchmark between NMPC-DHOCBF and iMPC-DHOCBF with the same randomized states as in Tab. I. The target
position is shared among four approaches and the hyperparameters are fixed as γ1 = γ2 = 0.6 for all scenarios. Based on Tab. I and Tab.
II we conclude that iMPC-DHOCBF outperforms NMPC-DHOCBF in computing time and infeasibility rate.

in Tab. I and Tab. II. Different from NMPC-DHOCBF, the
computing time is not heavily influenced by N and mcbf
for iMPC-DHOCBF. Based on the data from the two tables,
we also notice that larger hyperparameter values for γ will
slightly reduce the computation speed for both methods,
which is discussed in Sec. IV-B.1 and can be attributed to
the rise of converged iteration jt,conv. Compared to NMPC-
DHOCBF, the computing speed of our proposed method
is much faster with the improvement in computation time
directly proportional to the horizon, e.g., 100 ∼ 300 times
faster than the baseline given the chosen hyperparameters.

4) Optimization Feasibility: The rate of infeasibility in-
creases if the horizon N increases or mcbf is lower for
iMPC-DHOCBF. However, these two hyperparameters are
shown not to affect the infeasibility rate of the NMPC-
DHOCBF method proportionally. As the horizon increases,
the infeasibility rate of iMPC-DHOCBF outperforms that
of NMPC-DHOCBF. The main reasons for this come from
the difference in the convergence criteria and relaxation
techniques for CBF constraints, discussed in Rem. 4. The
NMPC-DHOCBF under IPOPT should have more strict
convergence criteria compared to iMPC-DHOCBF, which

obviously limits its feasibility if the number of horizon is
large. Besides, NMPC-DHOCBF is equipped with relaxed
nonlinear CBF constraints (13), while iMPC-DHOCBF has
relaxed linear CBF constraints (14). The linearization of the
CBF constraints reduces the feasibility region in the state
space, as illustrated in Fig. 1. This meets the expectation
of slight decreased feasibility rate of iMPC-DHOCBF when
number of horizon is small. However, we can see that
the decline in feasibility rate due to relaxed technique is
noticeably outperformed by flexible convergence criteria with
larger number of horizon N in Tab. I and II, which validates
our linearization technique in the iterative optimization.

V. CONCLUSION & FUTURE WORK

We proposed an iterative convex optimization procedure
for safety-critical model predictive control (iMPC) design.
Central to our approach are relaxations for the system
dynamics and for discrete time high-order control barrier
functions (DHOCBF) in the form of linearized constraints.
We validated the proposed iMPC-DHOCBF approach by
applying it to a model of unicycle navigating in an environ-
ment with obstacles. We noticed that the computation times
for the iMPC-DHOCBF method significantly outperform the



ones corresponding to the baseline, usually with even higher
feasibility rate. There are still some limitations of iMPC-
DHOCBF that could be ameliorated. One limitation of the
proposed method is its linearly relaxed technique will slightly
increase infeasibility rate with small size of the horizon.
Another limitation is that the feasibility of the optimization
and system safety are not always guaranteed at the same time
in the whole state space. We will address these limitations
in future work with better linearization, different relaxed
techniques as well as adaptive warm-up and convergence
criterion for the optimization problem.
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