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Abstract— Developing controllers for obstacle avoidance be-
tween polytopes is a challenging and necessary problem for
navigation in tight spaces. Traditional approaches can only
formulate the obstacle avoidance problem as an offline opti-
mization problem. To address these challenges, we propose a
duality-based safety-critical optimal control using nonsmooth
control barrier functions for obstacle avoidance between poly-
topes, which can be solved in real-time with a QP-based opti-
mization problem. A dual optimization problem is introduced
to represent the minimum distance between polytopes and the
Lagrangian function for the dual form is applied to construct
a control barrier function. We validate the obstacle avoidance
with the proposed dual formulation for L-shaped (sofa-shaped)
controlled robot in a corridor environment. We demonstrate
real-time tight obstacle avoidance with non-conservative maneu-
vers on a moving sofa (piano) problem with nonlinear dynamics.

I. INTRODUCTION

A. Motivation

Achieving safety-critical navigation for autonomous robots
in an environment with obstacles is a vital problem in
robotics research. Recently, control barrier functions (CBFs)
together with quadratic program (QP) based optimizations
have become a popular method to design safety-critical
controllers. In this paper, we propose a novel duality-based
approach to formulate the obstacle avoidance problem be-
tween polytopes into QPs in the continuous domain using
CBFs, which could then be deployed in real-time.

B. Related Work

1) Control Barrier Functions: One approach to provide
safety guarantees for obstacle avoidance in control problems
is to draw inspiration from control barrier functions. CBF-
QPs [2] permit us to find the minimum deviation from
a given feedback control input to guarantee safety. The
method of CBFs can also be generalized for high-order
systems [3], [4], discrete-time systems [5]–[7] and input-
bounded systems [8]–[11]. It must be noted that early work
on nonovershooting control in [12] could also have been used
to obtain results similar to control barrier functions. Specif-
ically, CBFs are widely used for obstacle avoidance [13]–
[18] with a variety of applications for autonomous robots,
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Fig. 1: Snapshots of solving the moving sofa (piano) problem using
our proposed formulation. It’s shown that the controlled object can
maneuver through a tight corridor whose width is smaller than the
diagonal length of the controlled object, which cannot be achieved
if we over-approximate these rectangle-shaped regions into spheres.

including autonomous cars [19], aerial vehicles [20] and
legged robots [21]. The shapes of robots and obstacles are
usually approximated as points [19], paraboloids [22] or
hyper-spheres [23], where the distance function can be calcu-
lated explicitly as an analytic expression from their geometric
configuration. The distance functions for these shapes are
differentiable and can be used as control barrier functions to
construct a safety-critical optimal control problem.

However, these approximations usually over-estimate the
dimensions of the robot and obstacles, e.g., a rectangle is
approximated as the smallest circle that contains it. When a
tight-fitting obstacle avoidance motion is expected, as shown
in Fig. 1, robots and obstacles are usually approximated
as polytopes. While this makes maneuvers less conservative
for obstacle avoidance, computing the distance between two
polytopes requires additional effort [24]. Moreover, since this
distance is not in an explicit form, it cannot be used directly
as a CBF. Furthermore, the distance between polytopes
is non-differentiable [25], which necessitates the use of
nonsmooth control barrier functions (NCBFs) to guarantee
safety [26], [27].

2) Obstacle Avoidance between Polytopes: We narrow our
discussions about obstacle avoidance between polytopes into
optimization-based approaches. In [28], obstacle avoidance
between rectangle-shaped objects in an offline planning
problem is studied, where collision avoidance is ensured
by keeping all vertices of the controlled object outside the
obstacle. Generally, when controlled objects are polyhedral,
the collision avoidance constraints can be reformulated with
integer variables [29]. This method applies well for linear
systems using mixed-integer programming but cannot be de-
ployed as real-time controllers for general nonlinear systems
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due to the complexity arising from integer variables. The
obstacle avoidance problem between convex regions could
also be solved by using sequential programming [30], where
penalizing collisions with a hinge loss is considered through
an offline optimization problem.

Recently, a duality-based approach [31] was introduced
to non-conservatively reformulate obstacle avoidance con-
straints as a set of smooth non-convex ones, which is
validated on navigation problems in tight environments [32]–
[35]. This idea does optimize the computational time com-
pared with other ideas, but nonlinear non-convex program-
ming is still involved. Moreover, this approach can only be
used for offline planning for nonlinear systems. This phi-
losophy has been extended into discrete-time control barrier
functions (DCBFs) to enforce obstacle avoidance constraints
between polytopes in real-time [36]. However, the result-
ing DCBF formulation is still non-convex with non-convex
DCBF or nonlinear system dynamics, and the computation
time of the DCBF formulation might not be sufficiently low
enough to be real-time. On the other hand, a continuous-time
formulation can result in a convex optimization formulation
even for nonlinear systems, which leads to faster computation
times. Thus, continuous-time obstacle avoidance between
polytopes requires a computationally efficient implementa-
tion, such as CBF-QPs and proper analysis on the nonsmooth
nature of distance between polytopes to guarantee safety. To
summarize, real-time obstacle avoidance between polytopes
with convex programming for general nonlinear systems is
still a challenging problem.

C. Contributions

The contributions of this paper are as follows:
• We propose a novel approach to reformulate a mini-

mization problem for obstacle avoidance between poly-
topes for nonlinear affine systems into a duality-based
quadratic program with CBFs.

• We establish the obstacle avoidance algorithm for the
minimum distance between polytopes under a QP-based
control law that guarantees safety, where the nonsmooth
nature of the minimum distance between polytopes is
resolved in the dual space. This formulation is used for
real-time safety-critical obstacle avoidance.

• Our proposed algorithm demonstrates real-time obstacle
avoidance at 50 Hz in the moving sofa (piano) prob-
lem [37] with nonlinear dynamics, where an L-shaped
controlled object can maneuver safely in a tight L-
shaped corridor, whose width is less than the diagonal
length of the controlled object.

II. BACKGROUND

We consider N robots, with the i-th robot having states
xi ∈ X ⊂ Rn and nonlinear, control affine dynamics:

ẋi(t) = f i(xi(t)) + gi(xi(t))ui(t), i ∈ [N ], (1)

where, ui(t) ∈ U ⊂ Rm, f i : X → Rn and gi : X → Rn×m
are continuous, and [N ] = {1, ..., N}. We assume X to be
a connected set and U a convex, compact set. While the

dimensions of the states and inputs for each system can be
different, we assume them to be the same across the systems
for simplicity. Throughout the paper, superscripts of variables
denote the robot index and subscripts denote the row index
of vectors or matrices.

A. Closed-loop Trajectory for Discontinuous Inputs

Polytopes have non-differentiable surfaces, and the mini-
mum distance between polytopes could be non-differentiable
at these points of non-differentiability. Hence, enforcing
safety constraints with the nonsmooth distance could result in
the loss of continuity property of the feedback control. Since
f i and gi might not be Lipschitz continuous and ui(t) may
be discontinuous, the solution of (1) need not be unique or
even well-defined. In this case, to have a well-defined notion
of a solution to (1), the dynamical system (1) is turned into a
differential inclusion. Let ui : X → U be some measurable
feedback control law. A valid solution for the closed loop
trajectory is defined via the Filippov map [27] as

ẋi(t) ∈ F [f i + giui](xi(t)) (2)
:= co{ lim

k→∞
(f i+giui)(x(k)) : x(k) → xi(t), x(k) /∈ Qf ,Q}

where ‘co’ stands for convex hull, x(k) denotes the k-th
element of the sequence {x(k)}, Qf is a system-dependent
zero-measure set, and Q is any zero-measure set. The result-
ing map F [f i + giui] : X → 2R

n

is a non-empty convex,
compact, and upper semi-continuous set-valued map. Here
2R

n

denotes the power set of Rn. For a set-valued map
Γ : X → 2R

n

to be upper semi-continuous at a ∈ X , we
require, ∀ {a(m)} ∈ X and {b(m)} such that b(m) ∈ Γ(a(m)),
limm→∞ a(m) = a and limm→∞ b(m) = b ⇒ b ∈ Γ(a).
Then for all xi0 ∈ X , a Filippov solution exists for the
differential inclusion (2) with xi(0) = xi0 [38, Prop. 3]. A
Filippov solution on [0, t] is an absolutely continuous map
xi : [0, T ]→ X which satisfies (2) for almost all t ∈ [0, T ].
Throughout the paper, the term “almost all” means for all
but on a set of measure zero.

B. Minimum Distance between Polytopes

For robot i, we define the polytope Pi(xi) as the l-
dimensional physical domain associated to the robot at state
xi ∈ X with

Pi(xi) := {z ∈ Rl : Ai(xi)z ≤ bi(xi)}, (3)

where Ai : X → Rri×l and bi : X → Rri×1 represent the
half spaces that define the geometry of robot i at some state,
shown in Fig. 2. We assume that the following properties
hold for Ai and bi:
• ∃ R, r > 0 such that ∀ xi ∈ X , ∃ c ∈ Rl such that
Br(c) ⊂ Pi(xi) ⊂ BR(c), where Br(c) represents the
open ball with radius r centered at c.

• Ai, bi are continuously differentiable, and ∀ x ∈ X , the
set of inequalities Ai(x)z ≤ bi(x) does not contain any
redundant inequality.

• ∀ x ∈ X , the set of active constraints at any vertex of
Pi(x) are linearly independent.



The first assumption requires that the geometry of the robot
Pi(x) be uniformly bounded with a non-empty interior for
all x ∈ X . This assumption guarantees regularity condi-
tions [39, Def. 2.3] are met for minimum distance compu-
tations, which in turn guarantee the essential conditions of
continuity [39, Thm. 2.3] and differentiability [39, Thm. 2.4]
of minimum distance. The last assumption requires that
no more than l half spaces intersect at any vertex. As
an example, a square pyramid in 3D does not satisfy this
criterion. Any polytope that does not satisfy this assumption
can be tessellated into smaller polytopes, such as tetrahedra.

The square of the minimum distance between Pi(xi) and
Pj(xj) is defined as hij(xi, xj), where hij : X × X → R
can be computed using the following QP:

hij(xi, xj) := min
{zi,zj}

‖zi − zj‖22

s.t. Ai(xi)zi ≤ bi(xi), Aj(xj)zj ≤ bj(xj),
zi, zj ∈ Rl.

(4)

Note that compared to the prior work on CBFs, the distance
hij is implicit and is a solution of a minimization prob-
lem. By the regularity and smoothness assumptions on the
polytopes, hij is locally Lipschitz continuous [40, Lem. 1].
Variables zi, zj ∈ Rl denote points inside the polytopes
Pi(xi) and Pj(xj) respectively. Since the feasible sets of
(4) are non-empty (by assumption), convex, and compact,
the solution to the QP (4) always exists and is non-negative.
When the robots intersect with each other the minimum
distance is uniformly zero, and there is no measure of
penetration between the polytopes.

C. Nonsmooth Control Barrier Functions

For obstacle avoidance, we want to design a controller
such that the minimum distance between any pair of robots
i and j should be strictly greater than 0. We define a safe
set of states Sij as the zero-superlevel set of the minimum
distance between robots i and j, hij [2],

Sij := {(xi, xj) : hij(xi, xj) > 0}c, (5)

where (·)c denotes closure of a set. Note that since
hij(xi, xj) = 0 for intersecting robot geometries, we use
closure to obtain the correct safe set. The closed-loop system
is considered safe if (xi(t), xj(t)) ∈ Sij ∀ t ∈ [0, T ], where
T is time till which the solution is defined.

Let ui(xi), uj(xj) ∈ U be feedback control laws
that are measurable, with corresponding Filippov solutions
xi(t), xj(t) for t ∈ [0, T ]. Since hij is locally Lipschitz
and the state trajectories are absolutely continuous, hij(t) :=
hij(xi(t), xj(t)) is an absolutely continuous function, and is
thus differentiable at almost all t ∈ [0, T ].

Lemma 1. [26, Lem. 2] Let α : R → R be a locally
Lipschitz class-K function. If

ḣij(t) ≥ −α(h(t)) (6)

for almost all t ∈ [0, T ] and h(0) > 0, then h(t) > 0 ∀ t ∈
[0, T ], making the system safe.

In this case the absolutely continuous function hij(t) is
called a Nonsmooth Control Barrier Function (NCBF), which
is a generalization of Control Barrier Functions (CBFs) to
nonsmooth functions. The constraint (6) is called the NCBF
constraint. In the following section we derive a safety-critical
feedback control law that satisfies this property.

Remark 1. For simplicity of discussion, the later analysis
will be illustrated for a pair of robots i and j, and results
will be generalized where necessary. Further, for simplicity
of notation, we denote x := (xi, xj), h(x) := hij(xi, xj),
S := Sij , and u := (ui, uj) for the pair of systems i and j.

III. NCBFS FOR POLYTOPES

In this section, we will illustrate a general approach for
imposing NCBF constraints for polytopes. In order to enforce
the NCBF constraints, we need to be able to write ḣ(t)
explicitly in terms of Ȧi(t), Ȧj(t), ḃi(t), ḃj(t), which in turn
depend on u. In the following sub-section, we attempt to
construct an explicit formula for ḣ(t).

A. Primal Approach

To explicitly compute ḣ(t), we first need to show that it
exists. Let x(t), t∈[0, T ] be the Filippov solution correspond-
ing to a feedback control law u(x). Let O(t) be the set of
all optimal solutions to (4) at time t. For any pair of optimal
solutions (z∗i(t), z∗j(t)) ∈ O(t), let s∗(t) := z∗i(t)−z∗j(t)
be the separating vector. s∗(t) is fundamental for the distance
formulation between polytopes since it is related to the
minimum distance hij(t) = ‖s∗(t)‖22. We will next prove
that s∗(t) is unique, continuous, and right-differentiable.

Lemma 2. For all t∈[0, T ], the separating vector s∗(t)
is unique for all pairs of primal optimal solutions
(z∗i(t), z∗j(t)).

Proof. The feasible set of (4) is convex and compact, and the
cost function ‖zi−zj‖22 is convex. Projecting the feasible set
onto the zi + zj = 0 surface, the resulting set is also convex
and compact. Note that s = zi− zj ∈ Rl represents the pro-
jected co-ordinates on the zi+ zj = 0 surface. The resulting
cost function is ‖s‖22, is strictly convex, and therefore, the
optimal solution s∗(t) of the projected problem exists and
is unique. Since for any pair of primal optimal solutions
(z∗i(t), z∗j(t)), z∗i(t)− z∗j(t) is an optimal solution to the
projected problem, z∗i(t)− z∗j(t) equals s∗(t) for all pairs
of optimal solutions of (4). �

For all (z∗i(t), z∗j(t)) ∈ O(t), we define Acti(t) ⊂ [ri]
(Actj(t) ⊂ [rj ]) as the set of indices of constraints that are
active for all z∗i(t) (z∗j(t)) for Pi(t) (Pj(t)). Then,

Affi(t) := {zi : AiActi(t)(t)z
i = biActi(t)(t)} (7)

Affj(t) := {zj : AjActj(t)(t)z
j = bjActj(t)(t)}

represent two parallel affine spaces such that the minimum
distance between robots i and j at t is the distance between
Affi(t) and Affj(t). These affine spaces can be points,
hyperplanes, or even the entire space if the two polytopes
intersect. An example is pictorially depicted in Fig. 2.



We now assume that for almost all t ∈ [0, T ], ∃ ε > 0
such that the dim(Affi(t)), dim(Affj(t)), and dimension of
the othogonal subspace common between Affi(t) and Affj(t)
are constant for τ ∈ [t, t + ε). This is true when the set of
times when states of the system oscillate infinitely fast has
zero-measure. In practice the states of the system do not
oscillate infinitely fast due to limited control frequency and
inertia of the system. Then, under this assumption, we have
the following result:

Lemma 3. The separating vector s∗(t) is continuous and
right-differentiable for almost all t ∈ [0, T ].

Proof. Let t be a time when the dimensions of the affine
spaces and null space is constant for τ ∈ [t, t + ε). The
separating vector s∗(τ) is the unique vector from Affi(τ) to
Affj(τ) that is perpendicular to both of them. These three
constraints (that define s∗(τ) and establish orthogonality of
s∗(τ) to Affi(τ) and Affj(τ)) can be written in the form of a
system of linear equalities with the matrix right-differentiable
at τ = t. By the assumption on constant dimensions of the
above spaces (Affi(t),Affj(t), and their common orthogonal
subspace), this matrix has constant rank for τ ∈ [t, t+ε). By
Lem. 2, there is at least one solution to this system ∀ τ ∈
[t, t+ε). A right-differentiable solution to s∗(τ) can be found
from this linear system using Gauss elimination. Since s∗(t)
is unique by Lem. 2, s∗(t) must be right-differentiable, and
thus continuous, at t. �

To impose the NCBF constraint we then compute ḣ(t) =
limδ→0+ 1/δ(h(t+ δ)− h(t)) as:

ḣ(t+) =
d

dτ
‖z∗i(τ)− z∗j(τ)‖22

∣∣∣∣
τ=t+

. (8)

Although, h(t) = ‖s∗(t)‖22 is right-differentiable for almost
all times, the primal optimal solutions z∗i(t), z∗j(t) could be
non-differentiable or even discontinuous. So, ḣ(t) cannot be
written explicitly as a minimization problem from (8), since
ż∗i(t) and ż∗j(t) need not be well-defined. This leads us to
consider the dual formulation instead.

As a motivation, consider enforcing the collision avoid-
ance constraint Pi∩Pj=∅ explicitly. Constraining the dis-
tance between any two points in Pi and Pj to be greater
than 0 is not sufficient, since they may not be the closest
points. This is due to the fact that (4) is a minimization
problem. However, constraining a plane to separate Pi and
Pj is sufficient to guarantee Pi∩Pj=∅ even if it is not the
maximal separating plane. The dual formulation of (4) allows
us to explicitly compute this separating plane constraint,
which can be used in the NCBF constraint (4). The reason
for using the dual formulation instead of the primal is further
elaborated upon later in Remark 2.

B. Dual Formulation

The dual program of a minimization problem is a maxi-
mization problem in terms of the corresponding dual vari-
ables. For a quadratic optimization problem, as in (4), the
dual program has the same optimal solution as that of (4).

Fig. 2: At any two configurations, the minimum distance between
the robots i and j is the same as the minimum distance between
the affine spaces Affi and Affj , illustrated in blue. These spaces are
affine extensions of some two faces of the robots. The points on
robot i and j with the least distance are z∗i and z∗j respectively, and
s∗ represents the vector with the smallest norm. The dynamics of
the minimum distance between the robots is a hybrid system, with
the discrete states being the pair of faces of the robots generating
these affine spaces. For each discrete state, the minimum distance
varies smoothly as the distance between the two affine spaces.

So, differentiating the dual program will give ḣ(t) as a
maximization problem. Since any feasible solution to a max-
imization problem gives us a lower bound of the optimum,
we use the dual problem of (4) to get a lower bound of
ḣ(t). This enables us to express the NCBF constraint as a
feasibility problem rather than an optimization problem.

To obtain the dual program, we first transform the con-
strained optimization problem (4) to an unconstrained one
by adding the constraints to the cost with weights λi and
λj , which are called the dual variables. The unconstrained
problem is optimized in terms of zi and zj to obtain the
Lagrangian function L(λi, λj) as

L(λi, λj)=−1

4
λiAi(xi)Ai(xi)Tλi T−λibi(xi)−λjbj(xj).

(9)
The dual program is then defined as the maximization of the
Lagrangian function.

Lemma 4. The dual program corresponding to (4) is:

h(x) = max
{λi,λj}

L(λi, λj)

s.t. λiAi(xi) + λjAj(xj) = 0, λi, λj ≥ 0.
(10)

Proof. The proof is provided in Appendix A in the full
version of this paper [1]. �

Since an optimal solution to (4) always exists, an optimal
solution to (10) also always exists. Let (z∗i(t), z∗j(t)) ∈
O(t) and the active set of constraints at z∗i(t) be
Acti(z∗i(t), t). Linear independence constraint qualification
(LICQ) is said to be held at z∗i(t) if AiActi(z∗i(t),t) is full
rank [41, Def. 2.1]. By the linear independence assumption
on Pi(t), since the set of the active constraints at any
vertex of Pi(t) are linearly independent, AiActi(z∗i(t),t) is
also full-rank for all z∗i(t) [41, Lem. 2.1]. Then, the primal
problem (4) is considered non-degenerate and there exists a
unique dual optimal solution for (10) [41, Lem. 2.2]. The
dual optimal solution (λ∗i(t), λ∗j(t)) along with any primal



optimal solution (z∗i(t), z∗j(t)) must then satisfy the KKT
optimality conditions at t:

2λ∗i(t)Ai(t) = z∗i(t)T − z∗j(t)T = s∗(t)T , (11)

2λ∗j(t)Aj(t) = z∗j(t)T − z∗i(t)T = −s∗(t)T ,
λ∗ik (t) = 0 for k /∈ Acti(z∗i(t), t),

λ∗jk (t) = 0 for k /∈ Actj(z∗j(t), t).

Then, by LICQ, AiActi(t) and AjActj(t) have full rank and the
non-zero components of the dual optimal solutions at t can
be written explicitly as:

λ∗i(t)=s∗(t)TAi †Acti(t), λ
∗j(t)=− s∗(t)TAj †Actj(t), (12)

where (·)† is the generalized inverse. By assumption Affi(τ)
and Affj(τ) have full rank for τ ∈ [t, t + ε) for almost all
t ∈ [0, T ], and thus λ∗i(t) and λ∗j(t) are right-differentiable
at almost all t ∈ [0, T ]. Since λ∗i(t), λ∗j(t), Ai(t) and Aj(t)
are right-differentiable, we can differentiate the constraints
of (10). Finally, we can explicitly write a linear program,
which is obtained by differentiating the cost and constraints
of (10), to calculate ḣ(t) as:

Lemma 5. Let,

g(t) = max
{λ̇i,λ̇j}

L̇(t, λ∗i(t), λ∗j(t), λ̇i, λ̇j)

s.t. λ̇iAi(t) + λ∗i(t)Ȧi(t)

+ λ̇jAj(t) + λ∗j(t)Ȧj(t) = 0,

λ̇ik ≥ 0 if λ∗i(t)k = 0,

λ̇jk ≥ 0 if λ∗j(t)k = 0.

(13)

where L̇(t, λi, λj , λ̇i, λ̇j) represents the time-derivative of
Lagrangian function L(λi, λj) and is as follows,

L̇ =− 1

2
λiAi(t)Ai(t)T λ̇i T − 1

2
λiAi(t)Ȧi(t)Tλi T

− λ̇ibi(t)− λiḃi(t)− λ̇jbj(t)− λj ḃj(t).
(14)

Then, for almost all t ∈ [0, T ], ḣij(t) = g(t).

Proof. Since (λ∗i(t), λ∗j(t)) is the optimal solution to (10),
its derivative (λ̇∗i(t), λ̇∗j(t)) is a feasible solution to (13)
for almost all t ∈ [0, T ]. So, ḣij(t) = d

dtL(λ∗i(t), λ∗j(t)) ≤
g(t) for almost all t ∈ [0, T ]. Let (λ̇i, λ̇j) be a feasible
solution to (13). We can integrate the constraints of (13)
to find (λ̄i(τ), λ̄j(τ)), τ ∈ [t, t+ ε) which satisfy:

(λ̄i(t), λ̄j(t)) = (λ∗i(t), λ∗j(t)) (15)

(λ̄i(t), λ̄j(t)) is dual feasible for (10)

So, (λ̄i(τ), λ̄j(τ)) are dual feasible and have cost less
than hij(τ), i.e. L(λ̄(τ), λ̄(τ))≤hij(τ) ∀τ∈[t, t+ε) and
L(λ̄(t), λ̄(t))=hij(t). Differentiating the cost yields ḣij(t) ≥
L̇(t, λ∗i(t), λ∗j(t), λ̇i, λ̇j) for all feasible (λ̇i, λ̇j), and thus
ḣij(t)≥g(t). So, g(t)=ḣij(t) for almost all t∈[0, T ]. �

Based on the linear program in (13), we can conservatively
implement the NCBF constraint by enforcing, for some
(λ̇i, λ̇j) feasible for (13),

L̇(t, λ∗i(t), λ∗j(t), λ̇i, λ̇j) ≥ −α(h(t)). (16)

Lem. 5 then guarantees that

ḣ(t) ≥ L̇(t, λ∗i(t), λ∗j(t), λ̇i, λ̇j) ≥ −α(h(t)) (17)

which is the required NCBF constraint.

Remark 2. Due to the direction of inequality required for
the NCBF constraint, ḣ(t) needs to be expressed as a
maximization problem. This is the primary motivation for
considering the dual problem, since writing ḣ(t) using the
primal problem results in a minimization problem (8).

We use (16) to motivate a feedback control law to guaran-
tee safety of the system. The input u implicitly affects L̇ via
the derivatives of the boundary matrices Ai, Aj , bi, bj . Note
that L̇ is affine in λ̇i, λ̇j , and u. So, (16) is a linear constraint
in λ̇i, λ̇j , and u. So, ∀ x ∈ S, (10) is used to compute h(x),
λ∗i(x), and λ∗j(x) and the optimal solution of following
quadratic program is used as the feedback control:

u∗(x) = argmin
{u,λ̇i,λ̇j}

‖u− unom(x)‖2Q (18a)

s.t. L̇(t, λ∗i(x), λ∗j(x), λ̇i, λ̇j , u) ≥ −α(h(x)− ε21) (18b)

λ̇iAi(x)+λ∗i(x)(LfiA
i(x)+LgiA

i(x)u) (18c)

+λ∗j(x)(LfjA
j(x)+LgjA

j(x)u) = −λ̇jAj(x)

λ̇ik ≥ 0 if λ∗i(x)k<ε2, λ̇
j
k ≥ 0 if λ∗j(x)k<ε2, (18d)

|λ̇i| ≤M, |λ̇j | ≤M, (18e)
u ∈ U , (18f)

where unom(x) is a non-safe nominal feedback control law,
L(?)(·) represents the Lie derivative of (·) along (?), Q � 0
is the cost matrix, M is a large number, and ε1 and ε2 > 0
are small constants. unom(x) can be obtained by a control
Lyapunov function or by any tracking controller. Note that
(18) is a feedback law which does not assume existence of
Filippov solutions, since it is only a function of x and not t.

Remark 3. Since h(x) is quadratic in nature, its gradient
(if it exists) can be zero at ∂S, which can affect forward
invariance of S [2, Rem. 5]. For example, in 1D, let ẋ = u
and h(x) = x2. Then at x = 0, the NCBF constraint reduces
to 0·u ≥ 0, which is true ∀ u ∈ U . This would imply that the
system remains safe irrespective of the input, which is not
true. This problem can be solved by setting h(x) = x2− ε21,
which would result in non-zero gradient at x = ε1. So, we
consider an ε1 > 0 and the ε21-level set of h as

Ωε21 = {x : h(x) = ε21}. (19)

We can then redefine h(x) as (h(x) − ε21). If the new h
satisfies (6), then the ε21-superlevel set is safe.

Remark 4. The constant ε2 is used to ensure upper semi-
continuity of the feasible set of control inputs for (18). This
is similar to the almost-active gradient method used to prove
safety in [27, Thm. 3].

We now prove that (18) results in system safety.

Theorem 1. Let x(0) ∈ S and (18) be feasible ∀ x ∈ S
for some locally Lipschitz class-K function α. Then, using



the feedback control law (18), the system remains safe
irrespective of the cost function.

Proof. The proof is provided in Appendix B in the full
version of this paper [1]. �

Remark 5. This formulation can be extended to more than
2 robots by introducing a new pair of dual variables for each
pair of robots, and the corresponding constraints in (18). Note
that the dual variable for robot i corresponding to robot j
is different from that for robot k. Thus, the analysis in Sec.
III remains valid. Additionally, static or dynamic obstacles
can be represented as uncontrolled robots and non-convex
shaped robots can be represented through unions of different
polytopes with each using the same states and inputs.

IV. NUMERICAL EXAMPLES

In this section, we consider the problem of moving an
L-shaped sofa through an L-shaped corridor. The approach
presented in Sec. III is applied to solve the problem in real-
time.

A. Simulation Setup

The sofa is the controlled object, with the side length of
the L-shape as 1 m and the width as 0.1 m, as illustrated in
Fig. 1. To implement our controller, we consider the sofa as
the union of two 1 m × 0.1 m arms perpendicular to each
other. The width of the corridor is 1 m.

The states of the sofa are x = (z1, z2, θ) ∈ R2×R, where
(z1, z2) is the position of the vertex at the intersection of
the two arms, and θ is the angle of rotation. The inputs to
the sofa are (v, ω), where v is the speed of the sofa and ω
the angular velocity. The velocity of the sofa is assumed to
be along a π

4 angle to the arm. The nonlinear control affine
dynamics of the sofa is then,

ż1 = v cos(θ +
π

4
), ż2 = v sin(θ +

π

4
), θ̇ = ω. (20)

Further, we impose input bounds as |v| ≤ 0.3 m/s and
|ω| ≤ 0.2 rad/s. The corridor is represented as the union
of three rectangular walls, shown in Fig. 1. The polytopes
corresponding to these walls are defined as follows:

Wi := {z ∈ R2 : AW
i

z ≤ bW
i

}, i ∈ [3] (21)

We note the general problem description in Sec. II allows
for such static obstacles by eliminating the dependence of
AW

i

and bW
i

on the state, as mentioned in Rem. 5.
Similarly, the sofa is represented as:

Pj(x) := {z ∈ R2 : AS
j

(x)z ≤ bS
j

(x)}, j ∈ [2], (22)

where Pj(x) is denoted as Arm j. Arm 1 is the blue-colored
polytope in Fig. 1, whereas Arm 2 is the green-colored one.
Again, our description allows for this by choosing the same
states and inputs for the two polytopes.

The NCBF is chosen as the square of the minimum
distance as in (4). Notice that the QP-based program (18)
will always have a solution, as v = 0, ω = 0 is always
a feasible solution. Since we have static obstacles and the

Fig. 3: Square of minimum distance (NCBF) between the arms of
the sofa and the walls, where Wall W 1 (left figure) is the left wall,
Wall W 2 (right figure) the upper one, and Wall W 3 the inner wall
of the corridor. Since the minimum distance is always greater than
zero, the L-shaped sofa never collides with the obstacles over its
trajectory. Both plots have log-scale on the y-axis.

controlled object consists of two polytopes, we only enforce
NCBF constraints between Wi and Pj for i ∈ [3], j ∈ [2].

A control Lyapunov function Vclf [2] is introduced in the
final QP formulation in place of the nominal controller with
the form as follows:

Vclf (x) = (z1 − zd1)2 + (z2 − zd2)2 + k(θ − θd)2, (23)

where θd = −π4 . The desired position (zd1 , z
d
2) is chosen to

be at the end of the corridor, and the initial orientation is π
4 .

The CLF constraint V̇clf ≥ −α1Vclf − s is then enforced,
where s ≥ 0 is a slack variable. The slack variable ensures
that the feasibility of the QP-based program is not affected
by the CLF constraint. The margin ε1 as defined in Rem. 3
is chosen as 1.5 cm and ε2 is chosen as 10−5.

B. Results

The simulations are performed on a Virtual Machine with
4 cores of a 2.20 Ghz Intel Core i7 processor, running IPOPT
[42] on MATLAB, and the visualization is generated by
MPT3 [43]. The snapshots of the sofa trajectory is shown
in Fig. 1 and also illustrated in the multimedia attachment.

1) Enforcement of NCBF constraint: The system remains
safe throughout the simulation since the NCBF hij is greater
than ε21 for all possible robot-obstacle interactions as depicted
in Fig. 3. In Fig. 4, the values of ḣ(t), and LHS and RHS
terms in the NCBF constraints from (18) are shown. We can
see that by Lem. 5, the LHS term in the NCBF constraint
is always a lower bound to ḣ(t). This verifies the safety
property of our duality-based approach.

TABLE I: Statistical analysis of computation time (ms) per iteration

Timing (ms) mean ± std p50 p99 max
Distance QPs (10) 1.07 ± 0.29 0.99 1.94 20.1
Polytope-NCBF-QP (18) 14.5 ± 1.55 14.2 19.3 37.6
Total (2×3+1 = 7 QPs) 21.1 ± 1.69 20.8 26.9 41.6

2) Computation time: From Table I, we can see that there
are large outliers in computation time per iteration, but they
occur in less than 0.1% iterations. Nevertheless, from Table
I, we can apply our controller at 50Hz. The fast computation
time allows us to directly implement the control inputs from
(18) on the robot in real-time.

The optimization problem for the sofa problem has 51
variables and at most 72 constraints. In general consider



Fig. 4: NCBF constraint enforcement between Arm 1 and Wall 1
(top figure) and Arm 1 and Wall 3 (bottom figure). Illustration of
safety performance of the system. The red lines are ḣ(t), the yellow
lines are the lower bounds of ḣ(t), and blue line is the RHS of the
NCBF constraint. ᾱ1j(t) = −α(h1j(t)− ε21), where j is the wall.
The system safety is guaranteed with the red line being always
above the blue line.

N controlled robots in a d-dimensional space with f facets
and m control inputs. Then, the polytope-NCBF-QP (18)
has (1+d)N(N−1)

2 constraints along with at most 2f N(N−1)
2

non-negativity constraints and N(m+2f) variables, whereas
a CBF-QP formulation using spherical over-approximation
would have N(N−1)

2 constraints and Nm variables.
3) Continuity of ḣ(t) and λ∗(t): Fig. 4 also shows that

both ḣ(t) and the lower bound of ḣ(t) can have discontinu-
ities. For the case of the moving sofa problem, a discontinuity
in ḣ(t) can arise when the sofa is rotating and the point of
minimum distance on the sofa with any wall jumps from one
vertex to another, since the end points of the sofa arm need
not have the same velocity when rotating. The dual optimal
variables λ∗i(t) and λ∗j(t) are always continuous and right-
differentiable as shown in Sec. III. The dual variables are
plotted in Fig. 5, which demonstrate this property.

4) Deadlocks: For various initial conditions, the sofa can
get stuck in a deadlock in the corridor. This can happen
when the arms of the sofa are so large that it cannot turn
at the corner. It can also happen when the two arms of
the sofa get too close to the wall and the sofa cannot turn
because it would cause one of its arms to penetrate the wall.
Our controller still ensures safety in this case. A high-level
planner could help by generating a deadlock free trajectory
at low frequency that then serves as input to our control law.

C. Discussions

1) Nonlinearity of the system dynamics: The duality-
based formulation (18) is a convex quadratic program even
when the system dynamics is nonlinear, as long as it is
control affine. This allows us to achieve dynamically-feasible
obstacle avoidance with QPs for polytopes.

2) Optimality of solution vs computation time: As noted
in Sec. III, the cost function of the QP-based program (18)
does not affect the safety of the system. If the optimization
solver does not converge to the optimal solution, the current
solution can be used if it is feasible. This can be useful

Fig. 5: Dual optimal solutions for Arm 1 (left figure) and Arm
2 (right figure) of the robot corresponding to the obstacle wall
3. The dual optimal solutions are unique, continuous, and right-
differentiable as shown in Sec. III. Note that pair of dual variables
for Arm 1-Wall 3 are different from that of Arm 2-Wall 3, i.e.
the vector λW

3

(t) is different for Arms 1 and 2. The subscripts
represent the components of the vectors, and only the non-zero
components have been plotted.

in real-time implementations where both control frequency
and safety matter. A feasible solution to (18) can be directly
found in some cases, such as when the NCBF is constructed
using a safe backup controller [44].

3) Trade-off between computation speed and tight ma-
neuvering: A polytope with f i faces would require f i

dual variables in the dual formulation (18) and additional
constraints. Using a hyper-sphere as an over-approximation
to the polytope would require fewer dual variables, as in [4].
However, such an approximation can be too conservative and
completely ignore the rotational geometry of the polytope.
Using the full polytope structure can prove beneficial in
dense environments, such as the sofa problem, where a
spherical approximation cannot work. So, there is a trade-off
between computation speed and maneuverability. In practice,
a hybrid approach should be used: a hyper-sphere approxi-
mation when two obstacles are far away, and the polytope
structure when closer, which could find a good trade-off
between computation speed and maneuverability for tight
obstacle avoidance in dense environments.

4) Robustness with respect to the safe set: Since we
use the minimum distance between two polytopes as the
NCBF and not the signed distance, the minimum distance
is uniformly zero when two polytopes intersect. So, the
proposed controller is not robust in the sense that if the state
leaves the safe set, it will not converge back to it.

V. CONCLUSION

In this paper, we have presented a general framework
for obstacle avoidance between polytopes using the dual
program of a minimum distance QP problem. We have
shown that the control input using our method can be com-
puted using a QP for systems with control affine dynamics,
enabling real-time implementation. We have numerically
verified the safety performance of our controller for the
problem of moving an L-shaped sofa through a tight corridor.
We also have explored properties such as robustness and
deadlock avoidance. Further work in this topic would involve
extending our method to other convex shapes, and deriving
safety guarantees for more general classes of systems.
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