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Abstract— This paper presents a novel integration of adaptive
control and control barrier functions that offers tracking
stability as well as safety-critical constraints for nonlinear
underactuated systems in the presence of model uncertainty.
The proposed method is based on L1 adaptive control with a
nonlinear closed-loop reference model based on control barrier
functions. For underactuated systems, adaptation based on the
control output does not imply adaptation in the system state.
Therefore, to guarantee adaptive constraint enforcement which
depends on the entire state, we introduced a modified reference
state to represent the zero dynamics or internal states of the real
system inside the reference model. We evaluate our proposed
control design for the problem of dynamic walking of an un-
deractuated bipedal robot subject to safety-critical constraints
of foot placements on stepping stones under significant model
uncertainty. We present numerical results on RABBIT, a five-
link planar bipedal robot carrying a large unknown load on its
torso. Our proposed controller is able to demonstrate walking
while strictly enforcing the above constraints with an unknown
load of up to 30 Kg (94% of the robot mass).

I. INTRODUCTION

Stability and safety are two major criteria of a control
system for robotics applications. Recently, the use of the
quadratic program (QP)-based control via control Lyapunov
functions (CLFs) [10] and control barrier functions (CBFs)
[2] has become increasingly popular [3]. This framework
enables handling safety-critical constraints effectively in real-
time. Experimental validation of this type of controller for the
problem of Adaptive Cruise Control was presented in [15].
This framework has also been extended to various interesting
application domains, such as safety-critical geometric con-
trol for quadrotor systems [24] and safety-critical dynamic
walking for bipedal robots [20], [11]. Although this work can
handle safety-critical constraints, however a precise model of
the system is required to enforce the constraints.

Moreover, as presented in [25], preliminary robustness
analysis of the CBFs indicates that the safety-critical con-
straint will be violated in the presence of model uncertainty,
with the amount of violation being bounded by the value
of the upper bound of the model uncertainty. In particular,
model uncertainty leads to constraint violation of the safety-
critical constraints. Recently, there are several efforts in
developing adaptive control barrier functions for parametric
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uncertainty [23] or using data-driven approaches [14], [9].
In addition, these works also do not apply to under-actuated
systems.
L1 adaptive control technique has enabled decoupling of

adaptation and robustness in adaptive control techniques,
guaranteeing not only stability [5] but also transient per-
formance [6]. L1 adaptive control appears to have great
potential for application in aerospace systems, illustrated in
[7], [22]. The presence of a low-pass filter in the L1 adaptive
control allows us to prevent high-frequency control signals
that are typical and frequently seen in adaptive control
problems. This will be critical to keeping motor torques
less noisy and will contribute to ensuring the validity of the
unilateral ground contact constraints, as well as retaining the
energy efficiency of walking control of bipedal robots. In
our prior work on L1 adaptive CLF [18], we have presented
an adaptive control framework for model uncertainty with a
nonlinear reference model that arises as a closed-loop system
controlled by a control Lyapunov function based quadratic
program [1], [10]. In this paper, we build off this prior
work to simultaneously handle adaptive stability and state-
dependent constraints in the presence of model uncertainty
for both fully-actuated and under-actuated systems. We will
do this by incorporating L1 adaptive control with the CLF
and CBF control framework. In addition, for underactuated
systems, because the dimension of the control inputs and
outputs is smaller than that of the system state, there always
exists internal state or zero dynamics that we don’t directly
control in the system (e.g., the phase variable in control of
bipedal robots using HZD [1]). As a result, adaptive control
based on control output does not guarantee adaptation for the
entire system state for an underactuated system. Therefore,
we also propose to incorporate internal states from the real
system into the reference model to guarantee adaptation for
the safety constraints that depend on the entire system state.

The main contributions of this paper with respect to prior
work are as follows:

• Introduction of a new adaptive control technique that
handles stability and safety constraints under high levels
of model uncertainty.

• Adaptation for under-actuated systems by incorporating
internal states from the real system into the reference
model.

• Numerical validation of the proposed controllers on:

– Control of a rectilinear spring-cart system.
– Dynamic walking of a bipedal robot while carrying

an unknown load, subject to contact force con-
straints and precise foot-step location constraints.



• Our proposed controller enables a simulation model of
RABBIT to dynamically walk on stepping stones while
carrying an unknown load of up to 30 Kg (94% of the
robot mass).

• We have shown significant improvement in the adapt-
ability of the approach in comparison with the non-
adaptive baseline framework and our prior work on
robust CBF [17].

The rest of the paper is organized as follows. Section II
revisits control barrier functions and control Lyapunov func-
tions based quadratic programs (CBF-CLF-QPs). Section III
discusses the adverse effects of uncertainty and then Section
IV presents the proposed L1 adaptive control framework
for CBF-CLF-QP. Section V presents numerical validation
on different dynamical robotic systems. Finally, Section VI
provides concluding remarks.

II. CONTROL LYAPUNOV FUNCTIONS AND CONTROL
BARRIER FUNCTION BASED QUADRATIC PROGRAMS

REVISITED

A. System Model and Input-Output Linearizing Control

Consider a nonlinear control affine model{
ẋ = f(x) + g(x)u,

y = y(x),
(1)

where x ∈ Rn is the system state, u ∈ Rm is the control
input, and y ∈ Rm is a set of outputs.

If the control output y(x) has relative degree 2, then the
time-derivative ẏ(x) will be a function of the state x and not
dependent on the control input u. Considering the second
time-derivative ÿ, we have:

ÿ =
∂ẏ

∂x
ẋ = L2

fy(x) + LgLfy(x)u. (2)

where L represents the Lie derivative. To be more specific:

L2
fy(x) ,

∂ẏ

∂x
f(x), LgLfy(x) ,

∂ẏ

∂x
g(x). (3)

If the decoupling matrix LgLfy(x) is invertible, then the
controller

u(x, µ) = uff (x) + (LgLfy(x))−1µ, (4)

with the feed-forward control input

uff (x) = −(LgLfy(x))−1L2
fy(x), (5)

input-output linearizes the system. The dynamics of the
system (1) can then be described in terms of dynamics of the
transverse variables, η ∈ R2m, and the coordinates ξ ∈ Z
with Z being the co-dimension 2m manifold

Z = {x ∈ Rn | η(x) ≡ 0}. (6)

One choice for the transverse variables is,

η =

[
y(x)
ẏ(x)

]
. (7)

The input-output linearized system then is,
η̇ = f̄(η) + ḡ(η)µ

ξ̇ = p(η, ξ)

y = y(η),

(8)

where ξ represents uncontrolled states [1], and

f̄(η) = Fη, ḡ(η) = G, (9)

with,

F =

[
O I
O O

]
and G =

[
O
I

]
. (10)

The linear system in (9) is in controllable canonical form,
and a linear controller such as µ = −Kη can be designed
such that the closed-loop system η̇ = (F −GK)η is stable.
A corresponding quadratic Lyapunov function can then be
established through the Lyapunov equation.

B. Control Lyapunov Function based Quadratic Programs

1) CLF-QP: Instead of a linear control design µ = −Kη
in (4), an alternative control design is through a control
Lypapunov function V (η), wherein a control is chosen point-
wise in time such that the time deriviative of the Lyapunov
function V̇ (η, µ) ≤ 0, resulting in stability in the sense
of Lyapunov, or V̇ (η, µ) < 0 for asymptotic stability, or
V̇ (η, µ) + λV (η) ≤ 0, λ > 0 for exponential stability.

To enable directly controlling the rate of convergence,
we use a rapidly exponentially stabilizing control Lyapunov
function (RES-CLF), introduced in [1]. RES-CLFs provide
guarantees of rapid exponential stability for the transverse
variables η. In particular, a function Vε(η) is a RES-CLF for
the system (1) if there exist positive constants c1, c2, c3 > 0
such that for all 0 < ε < 1 and all states (η, z) it holds that

c1‖η‖2 ≤ Vε(η) ≤ c2
ε2
‖η‖2, (11)

V̇ε(η, µ) +
c3
ε
Vε(η) ≤ 0. (12)

The RES-CLF will take the form:

Vε(η) = ηT
[

1
εI 0
0 I

]
P

[
1
εI 0
0 I

]
η =: ηTPεη, (13)

and the time derivative of the RES-CLF (13) is computed as

V̇ε(η, µ) =
∂Vε
∂η

η̇ = Lf̄Vε(η) + LḡVε(η)µ, (14)

where

Lf̄Vε(η) =
∂Vε
∂η

f̄(η) = ηT (FTPε + PεF )η,

LḡVε(η) =
∂Vε
∂η

ḡ(η) = 2ηTPεG. (15)

It can be show that for any Lipschitz continuous feedback
control law µ that satisfies the RES condition (12), it holds
that

V (η) ≤ e−
c3
ε tV (η(0)), ‖η(t)‖ ≤ 1

ε

√
c2
c1
e−

c3
2ε t‖η(0)‖,



i.e. the rate of exponential convergence can be directly
controlled with the constant ε through c3

ε . One such con-
troller is the CLF-based quadratic program (CLF-QP)-based
controller, introduced in [10], where µ is directly selected
through an online quadratic program to satisfy (12), with
additional input constraints such as input saturation, friction
constraints, contact force constraints, etc., for robotic loco-
motion and manipulation.

The CLF-QP based controller with additional constraints
then takes the form,

CLF-QP with Constraints:

u∗(x) =argmin
u,µ,δ

µTµ+ pδ2 (16)

s.t. V̇ε(η, µ) +
c3
ε
Vε(η) ≤ δ, (CLF)

Ac(x)u ≤ bc(x), (Constraints)

u = uff (x) + (LgLfy(x))−1µ, (IO)

where p is a large positive number that represents the penalty
of relaxing the inequality, and Ac(x), bc(x) are formulated
based on addition input constraints.

Having revisited control Lyapunov function based
quadratic programs, we will next revisit control Barrier
functions.

C. Control Barrier Function

We begin with the control affine system (1) with the goal
to design a controller to keep the state x in the safe set

C = {x ∈ Rn : h(x) ≥ 0} , (17)

where h : Rn → R is a continuously differentiable function.
Then a function B : C → R is a Control Barrier Function
(CBF) [2] if there exists class K function α1 and α2 such
that, for all x ∈ Int(C) = {x ∈ Rn : h(x) > 0},

1

α1(h(x))
≤ B(x) ≤ 1

α2(h(x))
, (18)

Ḃ(x, u) ≤ γ

B(x)
, (19)

where

Ḃ(x, u) =
∂B

∂x
ẋ = LfB(x) + LgB(x)u, (20)

with the Lie derivatives computed as,

LfB(x) =
∂B

∂x
f(x), LgB(x) =

∂B

∂x
g(x). (21)

Thus, if there exists a Barrier function B(x) that satisfies
the CBF condition in (19), then C is forward invariant, or in
other words, if x(0) = x0 ∈ C, i.e., h(x0) ≥ 0, then x =
x(t) ∈ C,∀t, i.e., h(x(t)) ≥ 0,∀t. Note that, as mentioned
in [2], this notion of a CBF is stricter than standard notions
of CBFs in prior literature that only require Ḃ ≤ 0.

In this paper, we will use the following reciprocal control
Barrier candidate function:

B(x) =
1

h(x)
. (22)

Incorporating the CBF condition (19) into the CLF-QP,
we have the following CBF-CLF-QP based controllers:

CBF-CLF-QP:

u∗(x) =argmin
u,µ,δ

µTµ+ p δ2 (23)

s.t. V̇ε(η, µ) +
c3
ε
Vε(η) ≤ δ, (CLF)

Ḃ(x, u)− γ

B(x)
≤ 0, (CBF)

Ac(x)u ≤ bc(x), (Constraints)

u = uff (x) + (LgLfy(x))−1µ. (IO)

As presented in [2], the standard CBF is for the velocity
based safety constraints, or constraints such as (17) with h(x)
that has relative-degree one. For applications with constraints
of relative degree two or higher, we can use extension in [24]
or Exponential Control Barrier Functions [21].

Having presented control Lyapunov functions, control
Barrier functions, and their incorporation into a quadratic
program with constraints, we now explore the effects of
model uncertainty.

III. ADVERSE EFFECTS OF UNCERTAINTY IN DYNAMICS
ON THE CBF-CLF-QP CONTROLLER

The CBF-CLF-QP controller presented in Section II is
a powerful method that has been deployed successfully for
different applications, for example Adaptive Cruise Control
[15], quadrotor flight [24], and dynamic walking for bipedal
robots [20], [11].

However, this nonlinear control approach requires the
knowledge of an accurate dynamical model to guarantee
stability and safety for the system. To be more specific,
uncertainty in the nonlinear functions f(x), g(x) of the dy-
namics will affect the calculation of the Lie derivatives in (3),
(15) and (21). Therefore, the controller no longer guarantees
the CLF and CBF conditions in the QP (23). Therefore,
model uncertainty that is usually present in physical systems
can potentially cause poor quality of control leading to
tracking errors, and potentially leading to instability [19],
as well as violation of the safety-critical constraints [25]. In
this section, we will explore the effect of uncertainty on the
CLF-QP controller, and safety constraints enforced by the
CBF-QP controller.

A. Effects of uncertainty on CLFs

In order to analyze the effect of model uncertainty on
our controllers, we assume that the vector fields, f(x), g(x)
of the real dynamics (1), are unknown. We therefore have
to design our controller based on the nominal or reference
vector fields f̂(x), ĝ(x). A list of different models used in
this paper is presented in Table I. Then, the pre-control law
(4) get’s reformulated as

u(x) = ûff (x) + (LĝLf̂y(x))−1µ, (24)



Notations Model types
f, g true nonlinear model

f̂ , ĝ nominal nonlinear model

f̄ , ḡ true I-O linearized model
ˆ̄f, ˆ̄g nominal I-O linearized model

TABLE I: A list of notations for different models used in
this paper. A true model represents the actual (possibly not
perfectly known) model of the physical system, while the
nominal model represents the model that the controller uses.
While most controllers assume the true model is known, the
robust controllers in this paper use the nominal models and
offer robustness guarantees to the uncertainty between the
two models.

with
ûff (x) := −(LĝLf̂y(x))−1L2

f̂
y(x), (25)

where we have used the nominal model rather than the
unknown real dynamics.

Substituting u(x) from (24) into (2), the input-output
linearized system then becomes

ÿ = µ+ θ, (26)

where

θ = ∆1 + ∆2µ,

∆1 = L2
fh(x)− LgLfh(x)(LĝLf̂h(x))−1L2

f̂
h(x),

∆2 = LgLfh(x)(LĝLf̂h(x))−1 − I. (27)

Remark 1: In the definitions of ∆1,∆2, note that when
there is no model uncertainty, i.e., f̂ = f, ĝ = g, then ∆1 =
∆2 = 0.

Using F and G as in (10), the closed-loop system now
takes the form

η̇ = Fη +G(µ+ θ). (28)

B. Effects of uncertainty on CBFs

Similar to what we have seen about the effect of uncer-
tainty on CLFs and constraints, we will now see the effect of
uncertainty on CBFs. We note that the time-derivative of the
Barrier function in (22) depends on the real model. Therefore
we need to enforce the following constraint given by (19):

Ḃ(x, f, g, u) =
∂B

∂x
(f(x) + g(x)u) ≤ γ

B(x)
(29)

where ẋ = f(x)+g(x)u is the true system dynamics. As seen
in the case of control Lyapunov functions and constraints,
naively enforcing this barrier constraint using the nominal
model results in,

∂B

∂x
(f̂(x) + ĝ(x)u) ≤ γ

B(x)
(30)

where ẋ = f̂(x) + ĝ(x)u is the nominal system dynam-
ics known by the controller. Clearly due to model uncer-
tainty, or the significant difference between (f(x), g(x)) and

Low-pass Filter

𝜇2 = −𝐶 𝑠 𝜃

I-O Linearized Reference Model
ሶƸ𝜂 = 𝐹 Ƹ𝜂 + 𝐺 Ƹ𝜇

ሶ𝜃 = 𝐴𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛_𝐿𝑎𝑤( 𝜃, 𝜂, 𝜂)

CBF-CLF-QP
𝜇1 = 𝜇1(𝜂, 𝑥)

I-O Linearized Real Model
ሶ𝜂 = 𝐹𝜂 + 𝐺(𝜇 + 𝜃)

Real System
ሶ𝑥 = 𝑓 𝑥 + 𝑔 𝑥 𝑢

Reference Model
ሶො𝑥 = መ𝑓 ො𝑥 + ො𝑔 ො𝑥 ො𝑢

I-O Linearization
𝑢 = 𝑢(𝜇, 𝑥)

I-O Linearization
ො𝑢 = ො𝑢( Ƹ𝜇, ො𝑥)

CBF-CLF-QP
Ƹ𝜇1 = Ƹ𝜇1( Ƹ𝜂, ො𝑥)

𝜇 = 𝜇1 + 𝜇2

Ƹ𝜇 = Ƹ𝜇1 + 𝜇2 + 𝜃

Control output
Ƹ𝜂 = Ƹ𝜂( ො𝑥)

Control output
𝜂 = 𝜂(𝑥)

Fig. 1: Control diagram illustrating L1 adaptive control with
a CBF-CLF-QP based closed-loop reference model for fully-
actuated systems.

(f̂(x), ĝ(x)), this constraint is different from the previous
one. In fact, as analyzed in [25], this results in violation of the
safety-critical constraint established by the Barrier function.

IV. L1 ADAPTIVE CONTROL BARRIER FUNCTIONS

This Section will present a novel approach called L1

adaptive control Barrier functions (L1−CBF ) to guarantee
safety-critical constraints of nonlinear systems under model
uncertainty. Inspired by our work on using L1 adaptive
control with CLF-QP based closed-loop reference model
presented in [18] that can be used to guarantee stability under
model uncertainty, we now develop the method here to be
able to address both stability and constraints under model
uncertainty. Our approach works for both actuated and under-
actuated systems. Using a reference model with a closed-
loop control system controlled by control Barrier function
and control Lyapunov function based quadratic program
(CBF-CLF-QP), our adaptive control framework drives the
performance of the real system including safety and stability
close to those of the reference model.

In Section IV-A and IV-B, we will explain our control
structure. More details about the control design and safety
analysis will be presented later in Section IV-C.

A. L1 Adaptive Control Barrier Functions for Fully Actuated
Systems

In this Section, we will propose a new method to enforce
both stability and safety-critical constraints under model un-
certainty. Our method offers the flexibility to design a closed-
loop reference model based on our desired control goal. We
therefore can design the reference model so that the desired
system state will respect the additional properties (safety-
critical constraints in this case) rather than just stability
or convergence to the desired trajectory. Note that for the



conventional L1 adaptive control which uses a nominal linear
reference model [5], it is not trivial to incorporate additional
control goals into the system.

The control diagram of the proposed method on L1

adaptive control using CBF−CLF−QP based closed-loop
reference model is illustrated in Fig. 1. In this framework,
the adaptation law will compare the difference between the
real system output η (7) and the reference system output η̂
in order to create an estimation θ̂ of the model uncertainty
θ (27). The adaptation law will play the role as a feedback
controller that applies θ̂ to drive η̃ = η̂ − η → 0. With
fully-actuated systems, driving the control output η → η̂ is
equivalent to driving the system state x→ x̂. Furthermore, in
our proposed method, we also control the reference model to
enforce desired constraints or guarantee the reference system
state to stay within the safety set. Therefore, as the adaptation
law helps to drive the difference between the real state and
the reference state x̃ = x̂ − x → 0, the real system state x
will follow the same behavior of the reference system sate x̂.
As a result, the safety-critical constraints of the real system
will be guaranteed under model uncertainty. We will formally
establish these properties in Sec. IV-C.

B. L1 Adaptive Control Barrier Functions for Under-
Actuated Systems

Since we are interested in applying our controller to
a bipedal robot, an under-actuated system, we also want
to extend the adaptive CBF framework for under-actuated
systems. In this Section, we will introduce a modification of
the approach presented in Section IV-A. For under-actuated
systems, the dimension of the control output η (7) is less
than that of the system state x. The sate can now be written
as x = [η; ξ], where ξ is the internal state of the under-
actuated system. Therefore, while the adaptive control can
drive η close to the reference state η̂, the under-actuated
coordinate of the real system may differ from that of the
reference model. In other words, the major challenge of this
problem is the presence of the internal state ξ that is not a
part of the control output η. The adaptive control can help
to drive the real control output η to the reference control
ouput η̂. However, because the internal state ξ and ξ̂ are not
controlled or in some cases uncontrollable, the dynamics of ξ
and ξ̂ will differ significantly under high model uncertainty,
resulting in unexpected differences between the performance
of the real system and the reference model. The adaptation
law therefore will become aggressive and the system will
possibly be unstable. In order to overcome this issue, in Fig.
2, we propose a control diagram for a new adaptive CBF
approach for under-actuated systems, where the internal state
ξ from the real system will be combined with the reference
output η̂ to extract a new modified reference state x̂m. This
modified reference state x̂m will be used to design the
reference controller as well as the dynamics of the reference
model instead of using x̂ as we did for the fully actuated
adaptive CBF.

In the next Section, we will present in more detail the
design of the adaptation law as well as formal safety analysis

Low-pass Filter

𝜇2 = −𝐶 𝑠 𝜃
ሶ𝜃 = 𝐴𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛_𝐿𝑎𝑤( 𝜃, 𝜂, 𝜂)

CBF-CLF-QP
𝜇1 = 𝜇1(𝜂, 𝑥)

I-O Linearized Real Model
ሶ𝜂 = 𝐹𝜂 + 𝐺(𝜇 + 𝜃)

Real System
ሶ𝑥 = 𝑓 𝑥 + 𝑔 𝑥 𝑢

Reference Model
ሶො𝑥 = መ𝑓 ො𝑥𝑚 + ො𝑔 ො𝑥𝑚 ො𝑢

I-O Linearization
𝑢 = 𝑢(𝜇, 𝑥)

I-O Linearization
ො𝑢 = ො𝑢( Ƹ𝜇, ො𝑥𝑚)

CBF-CLF-QP
Ƹ𝜇1 = Ƹ𝜇1( Ƹ𝜂, ො𝑥𝑚)

𝜇 = 𝜇1 + 𝜇2

Ƹ𝜇 = Ƹ𝜇1 + 𝜇2 + 𝜃

Control output
Ƹ𝜂 = Ƹ𝜂( ො𝑥)

Control output
𝜂 = 𝜂(𝑥)

Internal states
𝜉 = 𝜉(𝑥)

Modified reference states
ො𝑥𝑚 = ො𝑥𝑚 ( Ƹ𝜂, 𝜉)

Fig. 2: Control diagram illustrating L1 adaptive control with
a CBF-QP based closed-loop reference model for under-
actuated systems. The reference model is modified using the
real system’s internal states.

of the proposed L1 adaptive control Barrier functions.

C. Control Design and Safety Analysis

Inspired by our prior work on L1 adaptive CLF for
stability [18], in this section, we will present the design
of the adaptation law, and then derive stability and safety
analysis of the control system. From the Section III, we
have the system with uncertainty described by (28) where
the nonlinear uncertainty θ = θ(η, t). As a result, for every
time t, we can always find out α(t), β(t) ∈ Rm such that
[8]:

θ(η, t) = α(t)||η||+ β(t). (31)

The principle of our method is to design a combined
controller µ = µ1 + µ2, where µ1 is to control the model to
follow the desired reference model and µ2 is to compensate
for the nonlinear uncertainty θ.

In this paper, we present a method to consider a reference
model for L1 adaptive control that arises from CBF-CLF-
QP, a safety-critical controller. In particular, we consider the
reference model that arises when µ1 is chosen to be the
solution of the QP (23). This reference model is nonlinear
and has no closed-form analytical expression.

The state predictor can then be expressed as follows,

˙̂η = F η̂ +Gµ̂1 +G(µ2 + θ̂), (32)

where,

θ̂ = α̂||η||+ β̂, (33)

and µ̂1 is computed as the solution of the following CBF-
CLF-QP:



CBF-CLF-QP for the state predictor:

µ̂∗
1(x̂) =argmin

µ̂1,δ̂

µ̂T1 µ̂1 + p δ̂2 (34)

s.t. V̇ε(η̂, µ̂1) +
c3
ε
Vε(η̂) ≤ δ̂, (CLF)

Ḃ(x̂, û1)− γ

B(x̂)
≤ 0, (CBF)

Ac(x̂)û1 ≤ bc(x̂), (Constraints)

û1 = ûff (x̂) + (LĝLf̂y(x̂))−1µ̂1. (IO)

In order to compensate the estimated uncertainty θ̂, we
can just simply choose µ2 = −θ̂ to obtain

˙̂η = F η̂ +Gµ̂1 (35)

which satisfies safety conditions since µ̂1 is designed through
the CBF-CLF-QP in (34). However, θ̂ typically has high-
frequency content due to fast estimation. For the reliability
of the control scheme and in particular to not violate the
unilateral ground force constraints for bipedal walking, it
is very important to not have high-frequency content in
the control signals. Thus, we apply the L1 adaptive control
scheme to decouple estimation and adaptation [6]. Therefore,
we will have

µ2 = −C(s)θ̂ (36)

where C(s) is a low-pass filter with the DC gain being 1.
Define the difference between the real model and the

reference model as η̃ = η̂ − η, we then have,

˙̃η = F η̃ +Gµ̃1 +G(α̃||η||+ β̃), (37)

where

µ̃1 = µ̂1 − µ1, α̃ = α̂− α, β̃ = β̂ − β. (38)

As a result, we will estimate θ indirectly through α and
β, or the values of α̂ and β̂ computed by the following
adaptation laws based on the projection operators [13],

˙̂α = ΓProj(α̂, yα),

˙̂
β = ΓProj(β̂, yβ), (39)

where Γ is a symmetric positive definite matrix.
We now have the control diagram of L1 adaptive con-

trol Barrier functions described in Fig. 1 for fully-actuated
systems and Fig. 2 for under-actuated systems.

In order to find out a suitable function yα and yβ for
the adaptation laws in (39), we will consider the following
control Lyapunov candidate function

Ṽ = η̃TPεη̃ + α̃TΓ−1α̃+ β̃TΓ−1β̃ (40)

Let δµ1(x) = µ1 − Klqrη where Klqr is the LQR gain
such that Acl = F −GKlqr is the solution of the following
Lyapunov equation:

ATclPε + PεAcl +Q = 0. (41)

It then implies that

(F η̃ +Gµ̃1)TPεη̃ + η̃TPε(F η̃ +Gµ̃1)

= −η̃TQη̃ + 2η̃TPεG(δµ̂1(x̂)− δµ1(x)). (42)

Because the solution of the QP controllers (23) and
(34) are Lipschitz continuous [16], it means that δµ1(x) is
Lipschitz continuous or there will exist a Lipschitz constant
Lδµ1

such that:

||δµ̂1(x)− δµ1(x)|| ≤ Lδµ1 ||x̂− x||. (43)

Furthermore, if x(η, ξ) is Lipschitz continuous, we can
imply that:

||x̃|| = ||x̂(η̂, ξ)− x(η, ξ)|| ≤ Lx||η̂ − η||, (44)

where Lx is a positive Lipschitz constant of the function
x(η, ξ).

From (42), (43), (44), it implies that:

(F η̃ +Gµ̃1)TPεη̃ + η̃TPε(F η̃ +Gµ̃1) ≤ −c3
ε
η̃TPεη̃.

(45)

Furthermore, with the property of projection operator [13],
we have:

(α̂− α)T (Proj(α̂, yα)− yα) ≤ 0,

(β̂ − β)T (Proj(β̂, yβ)− yβ) ≤ 0. (46)

So, if we choose the projection functions yα and yβ as,

yα = −GTPεη̃||η||,
yβ = −GTPεη̃, (47)

then from (42), (46), we will have
˙̃V +

c3
ε
Ṽ ≤ c3

ε
α̃TΓ−1α̃+

c3
ε
β̃TΓ−1β̃

−α̃TΓ−1α̇− α̇TΓ−1α̃

−β̃TΓ−1β̇ − β̇TΓ−1β̃. (48)

We assume that the uncertainties α, β and their time
derivatives are bounded. Furthermore, the projection oper-
ators (39) will also keep α̃ and β̃ bounded (see [8] for
a detailed proof about these properties.) We define these
bounds as follows:

||α̃|| ≤α̃b, ||β̃|| ≤ β̃b,
||α̇|| ≤α̇b, ||β̇|| ≤ β̇b. (49)

Note that we will not need to specify these bounds in our
controller. They are used to prove the stability of our closed-
loop system. Combining this with (48), we have,

˙̃V +
c3
ε
Ṽ ≤ c3

ε
δṼ , (50)

where

δṼ = 2||Γ||−1(α̃2
b + β̃2

b +
ε

c3
α̃bα̇b +

ε

c3
β̃bβ̇b). (51)

Thus, if Ṽ > δṼ then ˙̃V < 0. As a result, there exists T > 0,
so that Ṽ (t) ≤ δṼ ,∀t ≥ T . In other words, by choosing
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Fig. 3: Simulation on a single cart system: Comparison of robust CBF and L1 adaptive CBF with different levels of model
uncertainty. Our control goal is to enforce the state-dependent constraint B(x) ≥ 0. While the robust CBF controller fails
to enforce B(x) ≥ 0 in both (b) and (c), our proposed L1 adaptive CBF satisfies the constraint for all cases.

the adaptation gain Γ sufficiently large and convergence rate
ε sufficiently small, we can drive the Control Lyapunov
Function (40) to an arbitrarily small neighborhood δṼ of
the origin, implying Input-to-State stability [4]. Therefore
the tracking errors between the dynamics model (28) and
the reference model (32), η̃, and the error between the real
and estimated uncertainty, α̃, β̃ are bounded as follows:

||η̃|| ≤

√
δṼ
||Pε||

, ||α̃|| ≤
√
||Γ||δṼ , ||β̃|| ≤

√
||Γ||δṼ . (52)

The convergence properties of the CLF under our con-
troller will therefore contribute to the safety gurantee of the
CBF as follows. If the barrier function B(x) is Lipschitz
continuous, there exists a Lipschitz constant LB such that:

||B̃|| = ||B̂(x̂)−B(x)|| ≤ LB ||x̂− x|| ≤ LBLx||η̂ − η||

=⇒ B(x) ≥ B̂(x̂)− LBLx

√
δṼ
||Pε||

. (53)

In addition to that, the reference model guarantees safety
constraint (B(x̂) ≥ 0) since it is designed based on a perfect
model. Therefore, we have:

B(x) ≥ −LBLx

√
δṼ
||Pε||

. (54)

This implies that the safety constraint B(x) of the real system
will guarantee the Input-to-State Safety [12]. In other words,
this guarantees B(x) to be lower-bounded by a small negative
value. Note that δṼ can be made arbitrarily close to zero by
increasing the adaptation gain Γ.

V. SIMULATION VALIDATION

In this Section, we will present various numerical vali-
dation of the proposed method on adaptive control Barrier
functions. Following are the systems that we evaluate our
proposed controller on:

• Single cart system, a simple linear system,
• Bipedal robot walking on stepping stones while carrying

an unknown load, a non-linear under-actuated system.

A. Single Cart System (a simple linear system)
The single cart system has the following linear following

dynamics:

ẍ1 =
1

m
u, (55)

where x1 is the cart position and u in the input force applied
to the cart.

In this problem, the control goal is to drive the cart position
x1 as close as possible to the set point of xd1 = 1(cm), but
also guarantees that x1 ≤ xmax1 = 0.5(cm). In other words,
we enforce a CBF of B(x) = xmax1 − x1. We will compare
the performance of robust CBF [17] and L1 adaptive CBF.
The model uncertainty is introduced by scaling the mass of
the cart. As seen in Fig. 3, the result shows that with the mass
scale of 30, the L1 adaptive CBF still guarantees the safety
constraint while the robust CBF controller fails to keep the
system state in the safety set even with the mass scale of 10.

B. Bipedal robot walking on stepping stones while carrying
an unknown load (a non-linear under-actuated system)

In this part, we will apply the proposed L1 adaptive
CBF method for the problem of bipedal robotic walking
on stepping stones while carrying an unknown load. For
this problem, the robot needs to address model uncertainty
arising from an unknown load carried on the torso, while
enforcing safety-critical constraints to enforce precise foot-
step placement. Details about the formulation of CBF and
control parameters for this application can be found in [20].
A similar numerical study for this application was also
conducted in our prior work on robust CBF [17], which
was successfully validated with an unknown load of 15 kg
(47 % of the robot weight). With this development of L1

adaptive control, the robot can even carry 30 kg of unknown
load, which is 94 % of the robot weight while adjusting step
length for every walking step within the range of [35 : 55] cm
(see Fig. 4). Note that the Robust CBF controller [17] fails
right at the first walking step with this high level of model
uncertainty.

In Fig. 4, we include the snapshot of the simulation, CBF
constraints, swing foot trajectory, ground reaction force and
friction constraint, showing that the control goal and physical
constraints are met. The plots of the stance leg’s joint torques
also show the smoothness of the control inputs.

VI. CONCLUSION

We have presented a novel method of L1 adaptive safety-
critical control that enables the ability to enforce stability
and safety-critical constraints under high level of model un-
certainty for both fully-actuated and under-actuated systems.
The proposed adaptive control framework uses the nonlinear
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Fig. 4: Simulation of L1 adaptive CBF controller on a bipedal
robot walking on stepping stones while carrying an unknown
load of 30 kg (94 % of the robot weight).

closed-loop reference model that is controlled by CBF-CLF-
QP. Our method can be applied for both fully-actuated
and under-actuated systems. We validate our approach in
simulation for a single cart system, and bipedal robotic
walking. In comparison with the robust CBF presented in
[17], the L1 adaptive CBF controller has two advantages.
Firstly, since it can estimate and adapt to model uncertainty,
it maintains consistent performance under different level of
model uncertainty. The robust CBF controller instead tends
to be aggressive even without model uncertainty. Secondly,
in the same problem setup, the L1 adaptive CBF controller
can address larger model uncertainty. For example, for the
problem of bipedal robot walking on stepping stones while
carrying an unknown load, the adaptive controller works with
a load up to 30 kg but the maximum load that the robust
one can handle is 15 kg.
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