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Abstract— This paper develops a new control design for
guaranteeing a vehicle’s safety during lane change maneuvers
in a complex traffic environment. The proposed method uses a
finite state machine (FSM), where a quadratic program based
optimization problem using control Lyapunov functions and
control barrier functions (CLF-CBF-QP) is used to calculate the
system’s optimal inputs via rule-based control strategies. The
FSM can make switches between different states automatically
according to the command of driver and traffic environment,
which makes the ego vehicle find a safe opportunity to do
a collision-free lane change maneuver. By using a convex
quadratic program, the controller can guarantee the system’s
safety at a high update frequency. A set of pre-designed
typical lane change scenarios as well as randomly generated
driving scenarios are simulated to show the performance of
our controller.

I. INTRODUCTION

A. Motivation

Safety is critical in the automobile industry, and significant
progress in this area has been made via (semi-)autonomous
driving in the past few decades. While systems like adaptive
cruise control or lane departure warning systems have proven
to improve vehicle’s safety in simple scenarios, it is desirable
in the future that autonomous driving could handle safety-
critical tasks in more complex driving scenarios, for example,
autonomous lane change maneuvers. Lane change is chal-
lenging for both drivers and autonomous driving controllers
since multiple surrounding vehicles should be considered
and their future movements should be predicted. The more
challenging fact is that drivers or controllers have little time
to respond to avoid a crash if a threat occurs. According to
statistics provided by US National Highway Traffic Safety
Administration (NHTSA) in [1], about 9% of all vehicle
crashes involved lane change maneuvers.
B. Related Work

Several recent work focuses on this topic. In [2], [3],
new methods are proposed to predict the intent of other
surrounding vehicles. Research in [4], [5] focuses on the
generation of optimal trajectories for lane change maneuvers.
Various low-level controllers have been developed to track
the optimal path generated by planners. Model predictive
control (MPC) is a commonly used method. In [6]–[8], MPC
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Fig. 1: In our proposed lane change strategy, the mid-level path
planner and low-level controller in the traditional strategy are
unified into one optimization problem. This improves the com-
putational efficiency, which allows the strategy to guarantee the
system’s safety in fast changing environments through a low-level
safety-critical planner-controller.

based controllers are implemented. Additionally, simple lin-
ear [9] or nonlinear [10] feedback control method has also
been proven to be suitable for this task.

Based on previous work like [7], [8], we can summarize
the traditional autonomous lane change strategy as shown
in the left side of Fig. 1. A high-level behavior planner
makes the decision whether the ego vehicle should stay in
the current lane or change to the left (right) adjacent lane.
This can be done by human drivers (e.g. activating the turn
signal) or by algorithms [11]. Once a specific lane change
maneuver is triggered, a mid-level path planner generates a
collision-free optimal trajectory for the ego vehicle, which
will be tracked by a low-level controller. However, the mid-
level path planner usually can not be updated at a high fre-
quency and may not respond to a sudden threat immediately,
which means its planned trajectory may not always meet
safety-critical requirements in a fast changing environment.
Furthermore, there are always notable tracking errors in
the low-level controller, which means tracking a collision-
free trajectory could still be potentially unsafe. Therefore,
in a safety-critical autonomous lane change strategy, safety
relevant constraints should be considered in the low-level
controller directly and the controller must work at a high
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update frequency.
In order to guarantee the system’s safety in the low-level

controller, control barrier functions (CBFs) have recently
been introduced to ensure set invariance by considering the
system dynamics and several researchers have used CBFs
to ensure the system’s safety for the vehicle control design
problems. In [12]–[15], CBFs are used to implement obstacle
avoidance. A CBF-based controller to supervise the safety
of a learning based lane keeping controller is proposed
in [16]. In [17], CBFs are unified with control Lyapunov
functions (CLFs) via a quadratic program, and it illustrates
this CLF-CBF-QP formulation in the context of adaptive
cruise control. Due to its low computational complexity, this
quadratic program allows the low-level controller to work at
a high update frequency, which motivates us to investigate the
safety-critical lane change control design through the CLF-
CBF-QP formulation.

Rule-based strategies are also widely used in control
design. One example is the finite state machine (FSM), which
can make decisions according to input signals and transition
conditions [18]. Since its computational complexity is lower
than that of a traditional path planner, the FSM can be used
in a low-level controller and work at a high update frequency,
which inspires us to use a well-designed FSM to replace the
mid-level path planner in traditional lane change strategies.

Based on the above analysis, we propose a rule-based
safety-critical lane change control design. A FSM works
as the basic structure, where a quadratic program based
optimization problem using CLF and CBF constraints (CLF-
CBF-QP) is formulated to achieve control objectives and
guarantee the system’s safety. The FSM can unify the mid-
level path planner and low-level controller in traditional lane
change strategy as one: a low-level safety-critical controller,
see Fig. 1. The FSM is used to make the decision if the
ego vehicle can do a collision-free lane change maneuver or
not. If the current traffic environment isn’t suitable for a lane
change maneuver, the ego vehicle will keep the current lane
until a safe situation occurs. Additionally, if a threat arises
during a lane change maneuver, the FSM will enter another
state to drive the ego vehicle back to its current lane. Since
the safety relevant constraints are considered in the low-
level controller directly and a quadratic program allows the
controller to run with high update frequency, our proposed
strategy can guarantee the ego vehicle’s safety in complex
environments.

C. Contribution

The contribution of this paper is as follows:
� We present a rule-based safety-critical design by using

CLF-CBF-QP formulation, which can achieve the con-
trol objective and guarantee the vehicle’s safety via low-
level control in lane change maneuvers. The quadratic
program allows the controller to work at a high update
frequency.

� A finite state machine is used to unify mid-level planner
and low-level controller into one optimization problem,
a low-level safety-critical controller. The FSM helps the

proposed strategy do switches between multiple CBF
constraints in a complicated environment.

� We verify the performance of our controller using both
typical and randomly generated driving scenarios. The
result shows that our approach is generally applicable
in both highway and city driving scenarios.

D. Paper Structure

This paper is organized as follows: in Sec. II, we present
the background of vehicle model and optimal control with
control barrier functions and control Lyapunov functions.
In Sec. III, the safety-critical controller for lane change
maneuver is illustrated. To validate the performance of our
control design, pre-designed typical scenarios and randomly
generated cases are used to test the controller in Sec. IV.
Sec. V analyzes the controller and shows the potential future
work. Sec. VI presents concluding remarks.

II. BACKGROUND

A. Vehicle Model

In this paper, we use a kinematic bicycle model (1) in [19]
for our numerical validation and its dynamics is described
as follows,

_x = v cos ( + �) (1a)
_y = v sin ( + �) (1b)
_ =

v

lr
sin� (1c)

_v = a (1d)

� = tan�1

�
lr

lf + lr
tan (�f )

�
(1e)

where acceleration at vehicle’s center of gravity (c.g.). a and
front steering angle �f are the inputs of the system. x and
y denote the coordinates of the vehicle’s c.g. in an inertial
frame (X,Y).  represents the orientation of the vehicle. lf
and lr describe the distance from vehicle’s c.g. to the front
and real axles, respectively. � represents the slip angle of the
vehicle.

Remark 1: Both kinematic and dynamic bicycle models
are commonly used vehicle models in the field of au-
tonomous driving research. From [20], authors show that the
kinematic bicycle model works under small lateral accelera-
tion and also recommend 0.5�g as a limitation for the valid-
ity of the kinematic bicycle model (� is friction coefficient
and g is gravitational acceleration). In this work, we assume
our controller will result in small longitudinal acceleration
and this criteria will be considered as a constraint in our
optimal control problem in Sec. III

Notice that the kinematic model in (1) represents a nonlin-
ear nonaffine system. For our later usage, we assume that the
slip angle � is constrained with a small angle assumption in
our control design together, where we approximate cos� = 1
and sin� = �. Hence, (1) could be simplified as a nonlinear
affine form as follows,
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This nonlinear af�ne model in (2) with inputsa and �
will be used for our safety-critical control design. Input� f

in (1) can be calculated through (1e)

B. Safety-Critical Control

Consider a nonlinear af�ne control system

_x = f (x) + g(x)u; (3)

wherex 2 D � Rn , u 2 U � Rm represent the system's
state and input, andU is the admissible input set of the
system,f andg are locally Lipschitz.

For this nonlinear af�ne system, we are interested in the
system's safety. For the same control system (3), we de�ne
a superlevel setC � D � Rn of a differentiable functionh :
D � R ! R,

C = f x 2 Rn : h(x; t) � 0g; (4)

and we refer toC as a safe set. The functionh becomes a
control barrier function (CBF) if it can satisfy the following
condition [21]:

sup
u 2U

[
@h
@t

+ L f h(x; t) + L gh(x; t)u] � � h (x; t): (5)

When h(x; t) is time-invariant, denoted ash(x), then the
condition above could be simpli�ed [22] as follows,

sup
u 2U

[L f h(x) + L gh(x)u] � � h (x): (6)

The control barrier function guarantees the set invariance of
C for the system's safety. Besides the system's safety, we
have a control Lyapunov function for the system's stability,
where a functionV : D 2 Rn ! R+ is a control Lyapunov
function (CLF) if (i) V is positive de�nite and (ii) it can
satisfy the following condition:

inf
u 2U

[L f V(x) + L gV(x)u � � �V (x)]: (7)

Notice that and� in (5) and (7) could be generalized into
extended classK1 and K functions, respectively; and we
only treat them as linear functions with constant coef�cients
in this paper.

To guarantee the system's safety and achieve its control
objective simultaneously, the control Lyapunov function and
control barrier function can be uni�ed as a quadratic program
(CLF-CBF-QP) [17] and written as follows:

u(x) = argmin
(u ;� )2 Rm +1

1
2

uT H (x)u + p� 2 (8a)

s.t. L f V(x) + L gV(x)u � � �V (x) + � (8b)
@h
@t

+ L f h(x; t) + L gh(x; t)u � � h (x; t) (8c)

whereH (x) is a positive de�nite matrix, and� is a relaxation
variable to make the CLF constraint become a soft constraint
to mediate stability for safety, andp is the penalty for this
relaxation variable. This formulation will be used for our
control design, which will be introduced in Sec. III.

Fig. 2: Finite state machine of lane change controller. The command
from behaviour planner (c), current traf�c environment (e) and the
ego vehicle's positional information (p) work as the input signals
to this �nite state machine and its output is the controller's state.

III. C ONTROL DESIGN

After introducing the vehicle model and CLF-CBF-QP
formulation, a safety-critical lane change controller will
be presented in this section. The proposed controller is a
�nite state machine (FSM), where rule-based CLF-CBF-
QP formulations are used to calculate the system's optimal
input. This FSM will be introduced in Sec. III-A. Then
we will present the safety-based conditions for switches of
constraints in Sec. III-B. Finally, details about the CLF-CBF-
QP formulations will be shown in Sec. III-C.

A. Finite State Machine

Fig. 2 shows the proposed FSM. The FSM's output is a
state representing one of the following:
Adaptive Cruise Control State- ACC: The ego vehicle
maintains a desired speed and follows a leading vehicle in
its current lane at a safe distance.
Left or Right Lane Change State- L or R: The ego vehicle
is expected to do a collision-free lane change maneuver to
the left or right adjacent lane, respectively.
Back to Current Lane From Left or Right State- BL or
BR: The ego vehicle drives back to its current lane to avoid
a potential crash if a threat arises during a lane change
maneuver.

Having presenting the FSM's state de�nitions, we next
introduce the FSM's input signals (c; p; e) and reveal how
they make the FSM switch between the above states.
Command from High-Level Behaviour Planner (c) : This
indicates the high-level planner's expected maneuver for the
ego vehicle. Value 0 will set the controller inACC state;
value 1 or -1 will make the controller work inL or R state,
respectively.
Positional Information - (p) : This represents the ego vehi-
cle's relative lateral position. Value 0 means the ego vehicle
is in its current lane; if it moves across the edge between
current and target lanes,p will change to 0.5; �nally, when
the ego vehicle is totally in its target lane for more than
some duration of time, e.g. 1.5s,p will become 1, which
represents the success of a lane change maneuver and will
bring the controller back toACC state.
Traf�c Environment Information - (e) : This shows whether
the ego vehicle can do a lane change maneuver under safety-
critical constraints. When the CLF-CBF-QP formulation is



Fig. 3: Safe sets' invariance for switches of CBF constraints. The
green region and blue region represent two safe sets, respectively.
The brown region shows the unsafe set. When the controller does
a switch between two safe sets, the system's statex must be in the
intersection of two safe sets.

in the L or R state and is numerically unsolvable due to a
potential future collision,e will change from 1 to 0. When
c is not 0 bute is 0, then if the FSM is inACC state, it will
continue working in this state; otherwise, as shown in Fig.
2, the FSM will go back toACC state viaBL or BR state.

When c's value is -1 or 1 but the ego vehicle is inACC
state, a predictive calculation as in (10) will be made to
determine if the ego vehicle can get enough space for a lane
change maneuver after accelerating to the speed limit. When
the result shows this is possible, the speed limit will be the
desired speed forACC state and the ego vehicle will re-enter
L or R state once the lane change CLF-CBF-QP is solvable.

These switches between different states implement the
function of a planner in our proposed strategy. According
to the input signals, the FSM will decide when is the best
opportunity to do the lane change maneuver. Additionally,
if this maneuver is interrupted, the FSM will drive the ego
vehicle to change to its target lane again once it is safe.

B. Safety-Based Conditions for Switches of CBFs

In this section, we will show the continuity of the system's
safety under different CBF constraints. In our controller, the
switches between different CBF constraints could happen
when the FSM changes state or a CBF constraint is removed
from the CLF-CBF-QP formulation (see Sec. III-C). This
asks the controller to guarantee the continuity of system's
safety. As shown in Fig. 3, system's CBF constraints before
and after a switch can be described as safe setsC1 and C2,
respectively. Whenh2(x ; t) replacesh1(x ; t) as the new CBF
constraint, if the system's statex is in the intersection ofC1

andC2, the new barrier functionh2(x ; t) will make the new
safe setC2 invariant after the switch, which will guarantee
the system's safety. This condition is used to design switches
between different CBF constraints in this paper.

C. Rule-Based CLF-CBF-QP Formulation

We now present the CLF-CBF-QP formulations in differ-
ent FSM states. Firstly, we consider a typical lane change
scenario as shown in Fig. 4, where the red vehicle is our
ego vehicle. In the controller, up to three vehicles will be
selected as vehicles of interest (vehicles with letters in Fig.
4): vehiclefc represents the vehicle immediately infront of
the ego vehicle in itscurrent lane(blue vehicle in Fig. 4);

Fig. 4: A typical lane change scenario. Red indicates the ego
vehicle; vehicles with letters are safety-critical relevant vehicles.
Green vehicles will not be considered in control design. The frame
is the inertial frameE that is used in further discussion.

TABLE I: Notations and Symbols for control design.

Notation Description
Vehicle's Dimension Data

l fc length of vehicle's body that is in front of the c.g.
l rc length of vehicle's body that is behind the c.g.
wlc width of vehicle's body that is on the left of c.g.
wrc width of vehicle's body that is on the right of c.g.

Ego Vehicle's Data
(x; y ) coordinates of c.g. in frameE

v ego vehicle's speed
 ego vehicle's yaw angle
vd ego vehicle's desired speed
vl ego vehicle's speed limit of current scenario
al ego vehicle's acceleration limit
� a safety factor between 0.1-1 (1 is safest)

Other Vehicles' Data
(xk ; yk ) coordinates of vehiclek's c.g. in frameE

vk vehiclek's speed
ak vehiclek's acceleration

� xk
time varying longitudinal distance between vehiclek
and the ego vehicle, equal tojx � xk j � l fc � l rc .

� yk
time varying lateral distance between vehiclek and

the ego vehicle, equal tojy � yk j � wrc � wlc .

vehiclebt represents the vehicle immediatelybehindthe ego
vehicle in thetarget lane(purple vehicle in Fig. 4); vehiclef t
denotes the vehicle immediately infront of the ego vehicle in
the target lane(yellow vehicle in Fig. 4). Other surrounding
vehicles like green ones in the Fig. 4 will not be considered
in the controller. The frame in Fig. 4 is the inertial frame
used in further discussion, which is calledE .

Remark 2: In this work, we are interested in the safety-
critical control of the autonomous lane change maneuver. To
explore this problem, we assume the controller has access
to accurate data of all surrounding vehicles. This could be
done through Lidar, vision, radar, and ultrasonic sensors.

TABLE I shows notations that will be used for further
discussion and the subscriptk can representfc , bt or f t ,
which indicates the corresponding vehicle with respect to
the ego vehicle.

Remark 3:The vehicle's position, velocity or yaw angle
information is a function of time. In order to simplify
the notations for discussion, in this paper, we omit time
information in the notations. For example,v represents the
speed of the ego vehicle at the current time.

We next present constraints used in the optimization
problem, divided into two groups:
Hard Constraints: These represent the safety-critical rele-
vant constraints. In our controller, these constraints are used
to keep the ego vehicle at a safe distance from the surround-



ing vehicles, which is de�ned by us as 1+� times following
vehicle's speed. For example, if the ego vehicle changes
its lane, the distance between it and the vehiclebt should
be greater than (1+� )vbt . Hard constraints should never be
violated under any conditions and will be guaranteed through
CBF constraints.
Soft Constraints: These introduce the control objectives
related constraints. The control goals will only be achieved
through CLFs when the hard constraints are satis�ed, for
example the speed or position of the ego vehicle. Through
CLF constraints, it is possible to track a desired position
without a reference trajectory.

Next we present details of the CLF-CBF-QP formulations
in each FSM state.

For all FSM states, the following CLFs will be used to
regulate the ego vehicle to track the desired speedvd and
reach its lateral dynamics' control objective:

Vv (x) = ( v � vd)2; (9a)

Vy (x) = ( y � yl )2; (9b)

V (x) =  2; (9c)

where yl is the y coordinate of current lane's center line
for statesACC, BL andBR or y coordinate of target lane's
center line for statesL andR in frameE.

As mentioned in Sec. III-A, if inputc is 1 or -1 but the
FSM is in ACC state, a simple predictive calculation will
be done to determine the ego vehicle's desired speed by �rst
computing the distances between the ego vehicle and the
three vehicles of interest:

� x0
fc = � x fc + vfc

vl � v
al

�
v2

l � v2

2al
� (1 + � )v; (10a)

� x0
f t = � x f t + vf t

vl � v
al

�
v2

l � v2

2al
� (1 + � )v; (10b)

� x0
bt = � xbt � vbt

vl � v
al

+
v2

l � v2

2al
� (1 + � )vbt : (10c)

If all equations above are greater than 0, which means
the ego vehicle will have enough space to change the lane
through accelerating to the current scenario's speed limitvl ,
vl will become the new desired speedvd in ACC state;
otherwise, the original desired speedvd will be used inACC
state.
CBF in ACC state: In this state, safety-critical control

should keep the distance between the ego vehicle and vehicle
fc greater than a pre-de�ned value. We refer to the distance
constraints and force based constraints in [17] and construct
the following CBF:

hfc (x ; t )=
�

� x fc � (1 + � )v�
(vfc � v)2

2al
if v � vfc

� x fc � (1 + � )v else
(11)

If the ego vehicle is faster than its leading vehiclefc , the
traveling distance during deceleration process will be con-
sidered in thehfc (x ; t). Otherwise,hfc (x ; t) � 0 indicates
the ego vehicle meets the safety-critical requirement directly.
Converting this CBF into its corresponding constraint in the
CLF-CBF-QP formulation will guaranteehfc (x ; t) always

greater than 0. This condition will also be used for similar
expressions later.
CBFs in L or R state: In this state, all three vehicles of

interest should be considered in the safety-critical control
design. Following CBFs will be constructed:

hfc (x ; t )=
�

� x fc � (1 + � )v�
(vfc � v)2

2al
if v � vfc

� x fc � (1 + � )v else
(12a)

hf t (x ; t )=
�

� x f t � (1 + � )v�
(vf t � v)2

2al
if v � vf t

� x f t � (1 + � )v else
(12b)

hbt (x ; t )=
�

� xbt � (1 + � )vbt �
(vbt � v)2

2al
if vbt � v

� xbt � (1 + � )vbt else
(12c)

Similarly to the (11), (12c) can be used to keep a safe
distance between the ego vehicle and vehiclebt (or after
the ego vehicle accelerates to the same speed as vehiclebt).
Additionally, during a lane change maneuver, after the ego
vehicle changes to its target lane, vehiclefc andbt will no
longer be the vehicles of interest. Therefore,hfc (x ; t) and
hbt (x ; t) will not be used if the ego vehicle is totally in its
target lane.

CBFs in BL or BR state: In this state, since the ego
vehicle will go back to its current lane, it should keep a
safe distance from vehiclefc by using the CBF as in (13a).
More importantly, hard constraints should be used to prevent
a potential crash with interrupted vehicles, which can be
either vehiclef t or bt. Equations (13b) and (13c) are used
to prevent a crash in both longitudinal and lateral directions
(if the vehiclef t or bt is overlapping with the ego vehicle
longitudinally). Following CBFs are used in this case:

hfc (x ; t )=
�

� x fc � (1 + � )v�
(vfc � v)2

2al
if v� vfc

� x fc � (1 + � )v else
(13a)

hf t (x ; t )=

(
� x f t �

(vf t � v)2

2al
if � x f t � 0 , v� vf t

� x f t if � x f t � 0 , v<v f t

� yf t � 0:1� else

(13b)

hbt (x ; t )=

(
� xbt �

(vbt � v)2

2al
if � xbt � 0 , vbt � v

� xbt if � xbt � 0 , vbt <v
� ybt � � else

(13c)

Remark 4:For the switches between different FSM states,
we take the change fromL to ACC state as an example to
show the continuity of the system's safety under different
CBF constraints. We assume that the ego vehicle does a left
lane change maneuver and only vehiclefc , f t exist. The
corresponding safe sets of CBF (12a) and (12b) are called
Cfc andCf t , respectively. InL state, the ego vehicle's state
x is in the intersections of these two sets. When the FSM
entersACC state, CBF (11) will be the only hard constraint
in the controller, which will build the same safe set asCf t

since vehiclef t becomes the new leading vehicle. In this
case, the intersection of setsCf t and Cfc is the subset of
Cf t , which meets the proposed safety-based conditions for
switches of CBF constraints in Sec. III-B.
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