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Abstract— This paper presents a method to design a min-
norm Control Lyapunov Function (CLF)-based stabilizing con-
troller for a control-affine system with uncertain dynamics
using Gaussian Process (GP) regression. In order to estimate
both state and input-dependent model uncertainty, we propose
a novel compound kernel that captures the control-affine
nature of the problem. Furthermore, by the use of GP Upper
Confidence Bound analysis, we provide probabilistic bounds
of the regression error, leading to the formulation of a CLF-
based stability chance constraint which can be incorporated in
a min-norm optimization problem. We show that this resulting
optimization problem is convex, and we call it “Gaussian
Process-based Control Lyapunov Function Second-Order Cone
Program” (GP-CLF-SOCP). The data-collection process and
the training of the GP regression model are carried out in
an episodic learning fashion. We validate the proposed algo-
rithm and controller in numerical simulations of an inverted
pendulum and a kinematic bicycle model, resulting in stable
trajectories which are very similar to the ones obtained if we
actually knew the true plant dynamics.

I. INTRODUCTION

Model-based controllers have a problem inherent to their
nature: model uncertainty. In this paper, we directly ad-
dress this issue for the case of Lyapunov-based stabilizing
controllers for nonlinear control-affine systems by using
Gaussian Process (GP) regression to estimate the adverse
effects of model uncertainty.

Control Lyapunov Functions (CLFs) [1], [2] have been
widely used in recent years for nonlinear model-based stabi-
lizing control of robotic systems [3], [4], [5]. Typically, the
robot is stabilized by enforcing the CLF to decay to zero with
a constraint in an optimization problem [6]. However, CLF-
based optimization methods heavily rely on the assumption
that the model used for the controller design accurately
represents the true plant’s dynamics. If there is model-
plant mismatch, convergence guarantees are often lost. Past
research has directly addressed this issue by using both
robust [4] and adaptive [7] control theory. More recently,
various kinds of data-driven methods that use neural net-
works have been introduced [8], [9], [10]. Although these are
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Fernando Castañeda, Jason J. Choi, Bike Zhang, Claire J. Tomlin and

Koushil Sreenath are with the University of California, Berkeley, CA,
94720, USA, {fcastaneda, jason.choi, bikezhang,
tomlin, koushils}@berkeley.edu

This work was partially supported through National Science Foundation
Grant CMMI-1931853 and DARPA Assured Autonomy program, grant
FA8750-18-C-0101. The work of Fernando Castañeda received the support
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demonstrated to be effective in practice, it is often difficult
to verify the reliability of the neural network predictions.

For this paper, we are more interested in another class
of data-driven approaches to tackle this problem, which use
GP regression to allow for the analysis of the confidence
of the prediction. The method of applying GPs to the CLF
constraint was first introduced for closed-loop systems in
[11]. Then, similar approaches have also been proposed for
the construction of stability and safety constraints to be
incorporated in min-norm controllers [12], [13], [14], [15].

However, all of these papers make an important assump-
tion that might restrict their applicability, which is that the
considered model uncertainty is unaffected by the control
input. In contrast, for many controlled systems, uncertain
input effects1 are prevalent, e.g., in a mechanical system,
uncertainty in the inertia matrix directly induces uncertain
input effects. In the work presented in [16], a similar prob-
lem is addressed for the case of Control Barrier Function-
based safety constraints [17] by the use of a Matrix-Variate
GP regression. However, it does not provide a regression
confidence analysis and results in an optimization problem
that is not always convex. Finally, all the aforementioned
GP-based approaches apply GP regression directly to the
dynamics vector fields, which scale poorly with the system
dimension.

In this paper, we develop solutions to overcome the
presented limitations of the previous GP-based methods.
First, we provide a formal way to deal with input-dependent
model uncertainty of control-affine systems by proposing a
specific GP kernel structure suitable for this problem. Since
we apply GP regression to a scalar uncertainty term in the
CLF constraint directly, compared to learning the uncertainty
terms in the dynamics, we can reduce the computation of the
regression significantly while still capturing many realistic
forms of uncertainty. A similar kernel structure was used
in [18] to learn the uncertainty terms in the autonomous
and control vector fields separately for a single-input sys-
tem. Here, we generalize the kernel to an arbitrary input
dimension and derive expressions for the posterior GP of a
combined input-dependent uncertainty term whose mean and
variance are linear and quadratic in the input, respectively. By
doing so, we can formulate a Second-Order Cone Program
(SOCP) which incorporates a chance constraint that takes
into account the confidence of the GP model and provides
the exponential stabilizability of the system. We call it
Gaussian Process-based Control Lyapunov Function Second-

1Uncertainty in the control vector field g(x) in (1).



Order Cone Program (GP-CLF-SOCP). Formulation of the
SOCP is crucial in that it can be solved quickly enough for
real-time applications due to its convexity. Finally, since the
inference time of GP regression is directly determined by
the size of the training data, we maximize data efficiency
by the use of an algorithm that iteratively collects data and
improves the GP regression model in an episodic learning
fashion.

The rest of the paper is organized as follows. In Section
II, we give a brief overview of CLF-based controllers and
show the effects that model uncertainty has on them. In
Section III, we explain the basic concepts of GP regression.
In Section IV, we present the compound kernel structure that
allows us to regress the control-affine uncertainty. In Section
V, we present the SOCP formulation of our uncertainty-
aware optimization problem. In Section VI, we propose
an efficient data-collection procedure. In Section VII we
validate the proposed method for two different systems.
Finally, in Section VIII, we provide concluding remarks.

II. PROBLEM STATEMENT

Throughout this paper we will consider nonlinear control-
affine systems of the form

ẋ = f(x) + g(x)u, (1)

where x ∈ Rn is the state of the system and u ∈ Rm is the
control input. The vector fields f : Rn → Rn and g : Rn →
Rn×m are assumed to be locally Lipschitz continuous and
f(0) = 0.

The main objective of this paper is the construction of a
locally stabilizing controller for such a system even when its
dynamics are uncertain. A system is called stabilizable when
it is asymptotically controllable to the origin with a feedback
control law u : Rn → Rm that is continuous except possibly
at the origin.

A. Control Lyapunov Functions

Definition 1. Let V : Rn → R+ be a positive definite,
continuously differentiable and radially unbounded function.
We say that V is a Control Lyapunov Function (CLF) for
system (1) if for each x ∈ Rn \ {0}

inf
u∈Rm

LfV (x) + LgV (x)u︸ ︷︷ ︸
=V̇ (x,u)

< 0, (2)

where the functions LfV (x) := ∇V (x) · f(x) and
LgV (x) := ∇V (x) · g(x) are known as Lie derivatives.

If such a CLF exists, the system is known to be globally
stabilizable [1]. Then, it is desirable to find a locally Lip-
schitz continuous feedback control law u : Rn → Rm such
that the condition LfV (x) + LgV (x)u(x) < 0 holds for
any x ∈ Rn \ {0}. A simple way of synthesizing such a
control law is by enforcing (2) as a constraint in a min-norm
optimization problem. If u is unconstrained, this min-norm
stabilizing controller can be expressed in closed-form [2].

However, many real-world systems require the addition of
input constraints due to actuator limitations, i.e., u ∈ U ⊂

Rm, in which case condition (2) becomes infu∈U LfV (x)+
LgV (x)u < 0, which might not be satisfied at every x ∈
Rn \ {0} even if V is a valid CLF for system (1). This fact
motivates the following lemma.

Lemma 1. Let V : Rn → R+ be a CLF for system (1) and
let U ⊂ Rm be the compact set of admissible control inputs.
For each c ∈ R+ let Ωc be the sublevel set of V such that
Ωc := {x ∈ Rn : V (x) ≤ c}. If there exists a ci > 0 such
that

inf
u∈U

LfV (x) + LgV (x)u < 0 (3)

is satisfied ∀x ∈ Ωci \ {0}, then the system is locally
stabilizable and Ωci is a control invariant subset of the
Region of Attraction (RoA) of the origin.

Proof. See [19, Proposition 2.2] for the proof of stabilizabil-
ity. The control invariance proof is straightforward since for
any x at the boundary of Ωc we can always find a u ∈ U
such that V̇ (x, u) < 0 from condition (3).

We can now take cmax as the maximum value of ci ∈ R+

such that (3) holds for any x ∈ Ωci \ {0}. Then, Ωcmax is
the largest sublevel set of V contained in the RoA.

We can also consider a stronger notion of stabilizability by
imposing exponential convergence to the origin. It is well-
known that if there exists a compact subset D ⊆ Ωcmax

such
that ∀x ∈ D the following holds for some constant λ > 0,

inf
u∈U

LfV (x) + LgV (x)u+ λV (x) ≤ 0, (4)

then the state of the system can be driven exponentially fast
to the origin from any initial state x0 ∈ Ωcexp

⊆ D [20]. If
such cexp > 0 exists, we will say that V is a locally expo-
nentially stabilizing CLF. The condition (4) can be incorpo-
rated as a constraint into a min-norm optimization problem:

CLF-QP:

u∗(x) = arg min
u∈U

uTu (5a)

s.t. LfV (x) + LgV (x)u+ λV (x) ≤ 0. (5b)

In this paper, we assume that the input constraints are linear,
which makes problem (5) a quadratic program (QP). We will
refer to constraint (5b) as the exponential CLF constraint.
This optimization problem defines a feedback control law
u∗: Rn → Rm selecting the min-norm input such that the
system state converges to the origin exponentially quickly.
Note that, in practice, constraint (5b) is typically relaxed by
adding a slack variable in order to guarantee the feasibility
of the problem if condition (4) is not locally satisfied [3].

B. Effects of Model Uncertainty on CLF-based Controllers

The main problem concerned in this paper is how to
reformulate the min-norm stabilizing controller defined in
(5) in the presence of model uncertainty.



First, we provide some necessary settings and assumptions
for our problem formulation. Let’s assume that we have a
nominal model

ẋ = f̃(x) + g̃(x)u, (6)

where f̃ : Rn → Rn, g̃ : Rn → Rn×m are Lips-
chitz continuous vector fields and f̃(0) = 0. We assume
that we have a locally exponentially stabilizing CLF V
for the nominal model, and that the plant is also locally
exponentially stabilizable with the same V . Note that the
region of exponential stabilizablity around the origin can
be sufficiently small. Also, the assumption can be relaxed
to asymptotic stabilizability if the user is concerned with
enforcing condition (3) instead of (4). In general, f̃ and g̃
would be different from the true plant vector fields f and
g because the nominal model is imperfect. The assumption
implies, however, that they share some similarity through the
stabilizing property of the same function V . Finally, we also
assume that we have access to measurements of state and
control input at every sampling time ∆t.

Our main objective is to construct the exponential CLF
constraint (5b) for the true plant when we only know the
model dynamics f̃ and g̃. Since V̇ (x, u) = LfV (x) +
LgV (x)u depends on the dynamics of the plant, the estimate
based on the nominal model ˜̇V (x, u) = Lf̃V (x)+Lg̃V (x)u,
will differ from its true value. We define ∆ : Rn×Rm → R
as the difference between these:

∆(x, u) := V̇ (x, u)− ˜̇V (x, u). (7)

Then, the exponential CLF constraint (5b) becomes

Lf̃V (x) + Lg̃V (x)u+ ∆(x, u) + λV (x) ≤ 0. (8)

Therefore, verifying the exponential CLF constraint for the
true plant amounts to a problem of learning the mismatch
term ∆(x, u) correctly and then enforcing (8). We can learn
this function from the past data by formulating a supervised
learning problem. Specifically, we will use GP regression, a
method that will be introduced in the next section.

Remark 1. In (7), if we express V̇ and ˜̇V with their
respective Lie derivatives, we get

∆(x, u) = (LfV (x)− Lf̃V (x))︸ ︷︷ ︸
=:∆1(x)

+ (LgV (x)− Lg̃V (x))︸ ︷︷ ︸
=:∆2(x)

u.

(9)
Note that we do not have access to ∆1(x) and ∆2(x) in this
equation since we are unaware of f and g. It is tempting to
learn each of these terms separately with supervised learning.
However, we can only measure ∆(x, u), which makes this
approach intractable. Nevertheless, we can exploit the fact
that the mismatch term ∆(x, u) is control-affine.

III. GAUSSIAN PROCESS REGRESSION

A Gaussian Process is a random process such that any
finite selection of samples {h(xk)}nk=1 has a joint Gaussian
distribution. A GP is fully determined by its mean function
q : X → R and covariance function k : X × X → R, i.e.,

h(x) ∼ GP(q(x), k(x, x′)), (10)

where X is the input domain, a connected subset of Rn,
h(x) is the output function sampled from the GP, and x, x′

denote input variables in X . Any positive definite kernel
function2 can be a valid covariance function [21]. Such a
kernel k(x, x′) can be used to generate a set of functions that
satisfy a specific property, namely a “reproducing” property.
An inner product between such a function h and the kernel
k(·, x) should reproduce h, i.e., 〈h(·), k(·, x)〉 = h(x), ∀x ∈
X . Such a set is called a Reproducing Kernel Hilbert Space
(RKHS, [21]), a specific class of function space, and is
denoted as Hk(X ). The RKHS norm ‖h‖k :=

√
〈h, h〉,

which will be used in Lemma 2, is a measure of the
smoothness of h with respect to the kernel function3. Note
that an appropriate inner product in the above expressions
would be determined by the specific choice of the associated
reproducing kernel k.

GPs encode prior distributions over functions and given
new query points, a posterior distribution can be derived from
the joint Gaussian distribution between the prior data and the
query points. This gives rise to their typical application in the
machine learning literature: GP regression. For the remainder
of the paper, we use q(x)≡ 0 as the mean function of the
prior GP. Given N input-output data pairs {(xj , zj)}Nj=1,
the regressor is provided by the posterior GP distribution
conditioned on the data. Here, the output data is assumed to
be measurements of h(xj), where h is the target function for
regression, with additive white noise, i.e., zj = h(xj) + εj ,
where εj ∼ N (0, σ2

n). Then, the mean and the variance of
the posterior h(x∗) at a query point x∗, are given as

µ∗ = zT (K + σ2
nI)−1KT

∗ , (11)

σ2
∗ = k (x∗, x∗)−K∗(K + σ2

nI)−1KT
∗ , (12)

which are derived from the distribution of h(x∗) conditioned
on {zj}Nj=1 [22]. K ∈ RN×N is the Gram matrix whose (ith,
jth) element is defined as k(xi, xj) for i, j = 1, · · · , N ,
and K∗ = [k(x∗, x1), · · · , k(x∗, xN )] ∈ R1×N . z ∈ RN
is the vector containing the output measurements zj . Note
that there exist various choices of kernel functions and many
of them depend on some hyperparameters which determine
the kernel’s characteristics. Depending on the choice of
kernel and hyperparameters, the result of the regression
varies, and the problem of choosing the best kernel and its
hyperparameters is known as the “training” process of the
GP regression [22]. In this work we use marginal likelihood
maximization, which is one of the most common training
methods.

After training, one would like to study how close the GP
model approximates the target function. In order to do this,
we use the Upper Confidence Bound (UCB) analysis [23],
specifically, the following lemma.

Lemma 2. [23, Thm. 6] Assume that the noise sequence
{εj}∞j=1 is zero-mean and uniformly bounded by σn. Let

2k is a positive definite kernel if its associated kernel matrix K(x1, x2),
whose (ith, jth) element is defined as k(xi, xj), is positive semi-definite
for any distinct points x1, x2 ∈ X .

3‖h(x)− h(x′)‖2 ≤ ‖h‖k ‖k(x, ·)− k(x′, ·)‖k ∀x, x′ ∈ X



the target function h : X → R be a member of Hk(X )
associated with a bounded kernel k, with its RKHS norm
bounded by B. Then, with probability of at least 1− δ, the
following holds for all x ∈ X and N ≥ 1:

|µ∗ − h(x∗)| ≤
(
2B2 + 300γN+1 ln3((N + 1)/δ)

)0.5
σ∗,

where γN+1 is the maximum information gain after getting
N + 1 data points, and µ∗, σ2

∗ are the mean and variance of
the posterior GP given by (11) and (12).

Proof. See [23, Thm. 6].

In this lemma, the assumption about the boundedness of
‖h‖k implicitly requires a “low complexity” of the target
function [24]. B is usually unknown a priori, but a trial-
and-error approach to find its value suffices in practice
[23]. γN+1 quantifies the reduction of uncertainty about h
in terms of entropy. It has a sublinear dependency on N
for many commonly used kernels and it can be efficiently
approximated up to a constant [23].

IV. GP REGRESSION FOR AFFINE TARGET FUNCTIONS

In this section, we use GP regression to learn the mismatch
term ∆(x, u) (7) from data. From (9), we know that ∆(x, u)
is affine in u. If we use an arbitrary kernel, we cannot exploit
this information in the GP regression. Therefore, our first
objective is to construct an appropriate kernel that captures
the control-affine structure of ∆ in the regression. In order to
do this, we introduce the general formulation of this problem
in this section. Consider p functions, hi : X → R for i =
1, · · · , p, and define

hc(x, y) := [h1(x) h2(x) · · · hp(x)] · y, (13)

where y ∈ Y ⊂ Rp. Our objective is to estimate the function
hc : X × Y → R which is affine in y by using GP
regression, given its measurements zj = hc(xj , yj) + εj for
j = 1, · · · , N .

The underlying structure of hc(x, y) tells us that it contains
information about p random functions {hi(x)}pi=1 condensed
to a single scalar value by a dot product with y. Therefore,
it is natural to consider p underlying kernels and their
composition. For i = 1, · · · , p, consider covariance functions
ki : X × X → R.

Definition 2. Affine Dot Product Compound Kernel: Define
kc given by

kc

([
x
y

]
,

[
x′

y′

])
:= yTDiag([k1(x, x′), · · · , kp(x, x′)])y′,

(14)
as the Affine Dot Product (ADP) compound kernel of p
individual kernels k1(x, x′), · · · , kp(x, x′).

Note that for a fixed (x, x′), the ADP compound kernel
resembles the well-known dot product kernel, defined as
k(y, y′) = yT y′ [22].

Lemma 3. If k1, · · · , kp are positive definite kernels, the
ADP compound kernel kc is also positive definite. Further-
more, if k1, · · · , kp are bounded kernels, kc is also bounded.

Proof. Consider the Gram matrix of kc, Kc ∈ RN×N for
{(xj , yj)}Nj=1. Let Ki be the Gram matrix of ki for {xj}Nj=1.
Define Y := [y1 y2 · · · yN ] ∈ Rp×N , and let yi

T be the
i-th row of Y . Then,

Kc =

p∑
i=1

(
yi yi

T
)
◦Ki,

where ◦ indicates the Hadamard product [25]. By the Schur
Product Theorem [25], if the ki are positive definite kernels,
then since each yiyi

T and Ki are positive semidefinite,
Kc is a positive semidefinite matrix. Therefore, kc is a
positive definite kernel by definition. Also, if the ki are
bounded kernels, each Ki is bounded so Kc is also bounded.
Therefore, kc is a bounded kernel.

By Lemma 3, since kc is positive definite, it is a valid co-
variance function. Consider a set of functionsHkc(X×Y) :=
{hc : X×Y→R | ∃hi∈Hki for i = 1, · · · , p, s.t. hc(x, y) =
[h1(x), · · · , hp(x)] · y} where each Hki is the RKHS whose
reproducing kernel is ki. Then, the following holds:

Theorem 1. Hkc(X × Y) is an RKHS whose reproducing
kernel is kc in Definition 2.

Proof. Define the inner product of Hkc to be

〈hc, h′c〉c :=

p∑
i=1

〈hi, h′i〉i,

for ∀hc, h′c ∈ Hkc where {hi}pi=1 and {h′i}
p
i=1 are sets

of functions whose i-th elements are from Hki that sat-
isfy hc(x, y) = [h1(x), · · · , hp(x)] · y and h′c(x, y) =
[h′1(x), · · · , h′p(x)] · y, respectively. Such sets of functions
should exist by definition of Hkc . 〈hi, h′i〉i is the inner
product of Hki . It is trivial that this definition satisfies the
axioms of the inner product. Then,〈

hc(·, ), kc

([
·
]
,

[
x
y

])〉
c

=

p∑
i=1

yi〈hi(·), ki(·, x)〉i

=

p∑
i=1

yihi(x) = hc(x, y).

The first equality holds because of Definition 2 and the
definition of 〈·, ·〉c. The second equality holds because of
the reproducing property of each ki(·, ·).

Theorem 1 allows us to apply the UCB analysis from
Section III to hc(x, y) with some additional conditions which
will be specified in Section V. Regression for hc(x, y) in
Lemma 2 (i.e. µ∗, σ∗) now can be treated in the same way as
any other kind of general GP regression, but with a specific
choice of covariance function given by (14).

One caveat of this regression is that depending on the
distribution of the inputs yj in the data, this problem can be
underdetermined. For instance, when every yj is a constant
vector, there are infinitely many choices of valid hi(x) that
give the same estimation error. Nevertheless, under our GP
regression structure, this evidence of underdetermination is
implicitly captured by larger values of the variance of the



posterior. In practice, it is preferable to avoid such underde-
termination since we want to reduce the uncertainty of the GP
posterior. Therefore, we need to carefully collect the training
data to make sure we capture rich enough information about
the target function. In Section VI we propose a method for
this purpose. In the system identification literature, this is
related to the property of persistency of excitation [26].

Finally, the main benefit of exploiting the affine structure
in the kernel is revealed in the expressions for the posterior
distribution’s mean and variance. This is the main difference
in how we use the ADP kernel compared to [18], where a
similar kernel is proposed for a special case p = 2. Let X ∈
Rn×N , Y ∈ Rp×N be matrices whose column vectors are
the inputs xj and yj of the collected data, respectively, and
let z ∈ RN be the vector containing the output measurements
zj . Then, plugging them and the ADP compound kernel into
(11) and (12) gives the following expressions for the mean
and variance of the posterior at a query point (x∗, y∗):

µ∗ = zT (Kc + σ2
nI)−1KT

∗Y︸ ︷︷ ︸
=:bT∗

y∗, (15)

σ2
∗ = yT∗

Diag

k1(x∗, x∗)

...
kp(x∗, x∗)


−K∗Y (Kc + σ2

nI)−1KT
∗Y


︸ ︷︷ ︸

=:C∗

y∗.

(16)
Here, Kc ∈ RN×N is the Gram matrix of kc for the training
data inputs (X,Y ), and K∗Y ∈ Rp×N is given by

K∗Y =


K1∗
K2∗

...
Kp∗

 ◦ Y, Ki∗ = [ki(x∗, x1), · · · , ki(x∗, xN )].

Readers can observe that (15) and (16) are affine and
quadratic in y∗, respectively. These structures are critical
when formulating the uncertainty-aware CLF chance con-
straint as a second-order cone constraint in the next section.

V. UNCERTAINTY-AWARE MIN-NORM STABILIZING
CONTROLLER

A. Probabilistic Bounds on the CLF Derivative

We have already presented all the necessary tools to verify
the probabilistic bounds on the mismatch term ∆(x, u) in (9).
Indeed, learning ∆ corresponds to the GP regression problem
defined by (15), (16), in which the target function hc is ∆,
x is the state, y = [1, uT ]T , p = m+ 1, h1 is ∆1, and hi+1

is ∆2’s i-th element for i = 1, · · · ,m.

Assumption 1. Consider bounded reproducing kernels ki
for i = 1, · · · ,m+1. We assume that ∆1 is a member of
Hk1 and each i-th element of ∆2 is a member of Hki+1

for i = 1, · · · ,m, respectively. We assume that their RKHS
norms are bounded.

Lemma 4. Under Assumption 1 and with a compact set of
admissible control inputs U , ∆ is a member of Hkc , the
RKHS created by the ADP compound kernel of ki for i =

1, · · · ,m+1. Moreover, its RKHS norm is bounded, namely
‖∆‖kc ≤ B.

Proof. The proof follows from Thm. 1 and the definition of
the inner product for Hkc in the proof of Thm. 1.

Assumption 2. We have access to measurements zi =
V̇ (xi, ui)− (Lf̃V (x) +Lg̃V (x)ui) + εi, and the noise term
εi is zero-mean and uniformly bounded by σn.

With Assumptions 1, 2 and Lemma 4, we can now apply
Lemma 2 to our regression problem.

Theorem 2. Let Assumptions 1 and 2 hold. Let β :=(
2B2 + 300γN+1 ln3((N + 1)/δ)

)0.5
, with N the number

of data points, and γN+1 as defined in Lemma 2. Let µ∗
and σ2

∗ be the mean and variance of the posterior for ∆
using the ADP compound kernel, at a query point (x∗, u∗)
as obtained from (15) and (16). Then, with a probability of
at least 1− δ the following holds:

|µ∗ −∆(x∗, u∗)| ≤ βσ∗. (17)

Proof. Proof follows from Lemmas 2 and 4.
The error in the estimation of the mismatch term ∆ is

now bounded for some confidence level. From (17) we can
easily derive the bounds on the true derivative of the CLF
for a probability of at least 1− δ:

˜̇V (x∗, u∗)+µ∗−βσ∗ ≤ V̇ (x∗, u∗) ≤ ˜̇V (x∗, u∗)+µ∗+βσ∗. (18)

B. GP-Based CLF Second-Order Cone Program

Taking the upper bound of (18), we can enforce the expo-
nential CLF constraint of (5b) with a probability of at least
1 − δ, and incorporate the resulting chance constraint into
a min-norm optimization problem that defines a feedback
control law u∗ : Rn → Rm pointwise:

GP-CLF-SOCP:

u∗(x) = arg min
u∈U, d∈R

uTu+ p d2 (19)

s.t. ˜̇V (x, u) + µ∗(x, u) + βσ∗(x, u) + λV (x) ≤ d.

With a slight abuse of notation, µ∗(x, u) and σ∗(x, u) are the
mean and standard deviation of the GP posterior at (x, u),
obtained from (15) and (16).

Remark 2. The stability constraint is relaxed in order to
guarantee the feasibility of the problem. If the initial state
x0 is outside the CLF maximum sublevel set for exponential
stability Ωcexp , we cannot guarantee exponential convergence
and neither can the controller which uses the true plant
dynamics. However, even for this case, we still do guarantee
that the approximation error of the CLF derivative is bounded
as given by (18) with probability 1− δ.

Note that this optimization problem does not require
knowledge about the true plant dynamics. The fact that µ∗
and σ2

∗ are affine and quadratic in u, respectively, is crucial
for the following main result of the paper:



Theorem 3. Using the proposed ADP compound kernel from
Definition 2, the uncertainty-aware optimization problem
(19) is convex, meaning that its global minimum can be
reliably recovered. Specifically, it is a Second-Order Cone
Program (SOCP).

Proof. Let’s first transform the quadratic objective function
into a second-order cone constraint and a linear objective.
Let the objective function be J(u, d) := uTu + p d2. Note
that by taking ϕ = [uT , d]T we can express the objective
as J(ϕ) = ϕTQϕ. Next, by setting z := Lϕ, where L is
the matrix square-root of Q, we can rewrite J(z) = ‖z‖22.
Note that minimizing J gives the same result as minimizing
J ′(z) := ‖z‖2. Now we can move the objective function J ′

into a second-order cone constraint by setting ‖z‖2 ≤ t and
minimizing the new linear objective function J ′′(t) := t.

The next step is to prove that the CLF chance constraint
is a second-order cone constraint. Note that ˜̇V (x, u) =
Lf̃V (x) + Lg̃V (x)u and µ∗(x, u) = bT∗ [1, uT ]T are both
control-affine. Note that σ∗(x, u) =

√
[1, uT ]C∗(x)[1, uT ]T

can be rewritten as σ∗(x, u) = ‖M(x)u+ n(x)‖2, although
we omit the expressions of M and n for conciseness. There-
fore, the CLF chance constraint is a second-order cone con-
straint, and the resulting optimization problem is an SOCP
with two second-order cone constraints corresponding to the
original objective function and the CLF chance constraint.
SOCPs are inherently convex.

VI. DATA COLLECTION

In this section, we introduce an algorithm that efficiently
collects measurements of ∆ for the GP regression. This data
should contain rich enough information about ∆, especially
about its dependency on u as discussed in Section IV, and
since our goal is to obtain a locally stabilizing controller,
it is preferable to exclude the data from outside the RoA
for efficiency. To this end, we propose an algorithm that
iteratively collects new data and trains a new GP model in an
episodic learning fashion. The algorithm uses the level sets
of the CLF as “guides” for expanding the training region by
exploiting Lemma 1. In addition, we use the idea of greedy
search in the Bayesian Optimization literature [23] to actively
explore the most uncertain area of the training region. Our
algorithm is based on the active learning algorithm of [27],
although while [27] focuses on guaranteeing safety online,
our objective is to maximize the efficiency of the offline data
collection.

A. Discrete-Time Measurements
First consider how to obtain inputs (xj , uj) and labels

(zj) —measurements of ∆(xj , uj)— of the training data. Let
x(t) and u(t) be the state and control input measurements
at time t and x(t+∆t) be the state measurement at the next
timestep. We can use these values to create input-label pairs
with O(∆t2) approximation error:

xj =
x(t+ ∆t) + x(t)

2
, uj = u(t),

zj =
V (x(t+ ∆t))− V (x(t))

∆t
− ˜̇V (xj , uj).

Note that uj is the control input during the interval [t, t+∆t),
and zj is the difference between the value of V̇ (xj , uj)
obtained from numerical differentiation and the nominal
model-based estimate.

B. Estimation of the Region of Attraction

Next, we introduce a new certificate with the learned
uncertainty for a conservative estimation of the RoA. Notice
that the condition for inclusion in the RoA provided by
Lemma 1, is only valid when there is no model-plant mis-
match. Thus, we have to incorporate the learned uncertainty
terms from Section IV as we do when we formulate the GP-
CLF-SOCP in Section V.

Theorem 4. Taking the GP posterior distribution from the
training data {(xj , uj , zj)}Nj=1, and β from (17), if there
exists a c > 0 such that for all x ∈ Ωc it holds that

inf
u∈U

˜̇V (x, u) + µ∗(x, u) + βσ∗(x, u) < 0, (20)

then Ωc is in the RoA with probability at least (1− δ).

Proof. Proof follows from Lemma 1 and Theorem 2.

Notice that this certificate is “conservative” in the sense
that it takes the worst-case bound of the effect of the
uncertainty term, based on the collected data. Therefore, if
we collect more data and improve our GP model to have
less uncertainty, then the conservatism will reduce and we
will be able to obtain a bigger subset of the RoA. This is
the central principle of the algorithm.

C. Algorithm Overview

Finally, we give an overview of the proposed algorithm.
1) Initial GP Model: We start by considering a level set

Ωc0 which is small-enough to be a subset of the RoA (Fig
1.a). Such c0 > 0 always exists due to our assumption that
V is a locally valid CLF. We collect an initial batch of
training data (D0) from a set of trajectories whose initial
states are randomly sampled from Ωc0 , and train an initial
GP regression model. Here, we use the nominal model-based
CLF-QP from (5) as our stabilizing controller.

2) Episodic Learning: The main loop of our algorithm
consists of a series of episodes, and each i-th episode is
mainly composed of three steps. 1) In the first step (Fig. 1.b),
we obtain a set of Ne points from (Ω(ci−1+∆ci)\Ωci−1

)×U at
which the variance of the posterior of the current GP model
is maximal. ∆ci is the parameter that determines the size of
the new exploration region. 2) Next (Fig 1.c), we run short
rollouts by taking each point from Step 1 as our initial state
and initial control input. During the rollouts, we also evaluate
the stabilizability condition (20) at each timestep. Note that
such evaluation is a feasibility problem which is also an
SOCP since (20) is a second-order cone constraint. After
the rollouts, we expand the level of V (we determine ci) up
to a point for which (20) becomes infeasible. 3) Finally (Fig
1.d), we add the data obtained from the trajectories within
Ωci to our data set, and train the next GP regression model.



Fig. 1. (a–d): Visualization of the episodic learning data collection algorithm running on the inverted pendulum example: Color map represents
the maximum variance of the posterior GP, maxu∈U ∆∗(x, u). Orange curves: level curves of the CLF. Green points: initial states for the rollouts, Blue
points: trajectory points added to the training data. Grey points: trajectory points excluded from the training data since they are outside Ωci . (a) Initial
GP Model: Trajectories sampled from the initial level set Ωc0 by running the CLF-QP are collected to create an initial GP model. (b) Episode i-Step
1: Ne initial states and initial control inputs in (Ω(ci−1+∆ci)

\ Ωci−1 )× U are determined where σ∗ are maximal. (c) Episode i-Step 2: Simulations
are run from such initial points and the resulting trajectories are saved. At the same time, ci is determined by evaluating (20) for the sampled trajectories.
(d) Episode i-Step 3: Finally, the i-th GP model is updated. Note the reduction in the variance. (Total episodes = 7, i = 3 for (b), (c), (d).) (e, f):
Distribution of the final training data plotted in the x–V (x) space (blue points) and plotted in x–u space, respectively. (e) Level curve in color magenta
is the Ωcmax (maximum level set contained in the RoA) for the true plant. The value of CLF is plotted in grey and the orange region is the region verified
as RoA through the data collection algorithm. (f) The color indicates the value of zi, the measurement of ∆(xi, ui). The number of data points is 425.

Remark 3. In Step 2 of an episode, we check condition
(20) only for finite sampled states in Ωci \ Ωci−1

, whereas
Theorem 4 requires (20) to be satisfied at every state in
Ωci . Notice that brute-force verification for the whole region
of Ωci will scale poorly with state dimension. Even though
we do not have the rigorous guarantee of Theorem 4 with
this algorithm, the error in the estimated cmax does not
affect the probabilistic guarantee of the resulting GP-CLF-
SOCP controller. In practice, we observe that we can well
approximate cmax such that Ωcmax

is contained in the true
RoA (See Fig. 1(e)).

VII. EXAMPLES

A. Two-dimensional System: Inverted Pendulum
Consider a control-affine two-dimensional inverted pen-

dulum as the one in [27], with parameters of the plant
mplant =2kg, l=1m and for the model, mmodel =1kg, l=1m,
which results in model uncertainty in both f and g in (1).

A CLF-QP controller (5) based on the nominal model is
designed to stabilize the pendulum to the upright position.
In order to illustrate the effects of model uncertainty, we
compare it with the CLF-QP controller based on the true
plant dynamics. The difference between the two controllers
(Fig. 2) is due to the effects of model uncertainty. Specif-
ically, in this case the model uncertainty makes the system
converge more slowly.

Fig. 1 depicts the data collection algorithm and the result-
ing training data for the GP model. The results of deploying
the GP-CLF-SOCP controller, with a confidence level of
1− δ = 0.95, are presented in Fig. 2 in blue lines. Note
that the results are very similar to those from the CLF-QP
based on the true plant dynamics, which means that the
GP-CLF-SOCP successfully captures the correct effects of
model uncertainty. Also, the computation time of the GP-
CLF-SOCP, including the GP inference time, is 9.1± 2.2ms
(max: 25.7ms) on a laptop with a 10th-gen Intel Core i7 and
32GB RAM.

In order to benchmark the GP-CLF-SOCP, we compare its
performance with the one obtained if we only learn the un-

certainty in f , as done in previous works [13], [15]. For this,
we design a GP-based Control Lyapunov Function Quadratic
Program (GP-CLF-QP) that only learns the uncertainty ∆1

in (9). The results of this controller are also shown in Fig. 2.

B. System with Multiple Control Inputs: Kinematic Bicycle

Next, in order to show that our method can be successfully
applied to systems with higher state dimension and multiple
control inputs, we apply it to track a reference trajectory
using a kinematic bicycle model. The state is defined as
x = [px, py, v, θ, γ]T (px, py: position coordinates, v: speed,
θ: heading angle, γ: tangent of the steering angle). The
dynamics of the system are given as

ẋ = f(x)+g(x)u, f(x)=


v cos θ
v sin θ
−fµ
vγ
0

 , g(x)=


0 0
0 0
bv 0
0 0
0 bγ

 , (21)

where u ∈ R2, and fµ, bv , bγ are constants that emulate
friction and skid effects. For the nominal model, we assume
no such effects (fµ = 0, bv = bγ = 1) and for the plant,
we use fµ = 1, bv = 1.5, bγ = 0.75. The objective is to
stabilize to a constant-velocity trajectory along the x-axis;
v(t) = 5, py(t) = θ(t) = γ(t) = 0. The initial state is set as
x0 = [0, 0.25, 2, 0.25, 0.25]T .

Fig. 3 shows the simulation results of the GP-CLF-SOCP
and those of the CLF-QP based on the nominal model and
the true plant. Here, we use a polynomial CLF [28], which
is verified to be locally stabilizing for the nominal model.
While the nominal model-based CLF-QP oscillates around
the reference trajectory, the GP-CLF-SOCP successfully con-
verges to the reference trajectory.

VIII. CONCLUSION

We have presented a method to design a stabilizing con-
troller for control-affine systems with both state and input-
dependent model uncertainty using GP regression. For this
purpose, we have proposed the novel ADP compound kernel,
which captures the control-affine nature of the problem.



Fig. 2. Simulation results of applying the GP-CLF-SOCP to the in-
verted pendulum example, with a model-plant mismatch of mplant =2kg,
mmodel =1kg, compared to the nominal-model-based CLF-QP, and to the
GP-CLF-QP that does not consider the uncertainty affected by u. Results
of the CLF-QP based on the true plant are also provided to show that the
GP-CLF-SOCP learns the correct exponential CLF constraint.

Fig. 3. Trajectories in x − y plane (Top) and histories of V (x(t))
(Bottom) of the kinematic vehicle under artificial drift and friction to
illustrate the applicability of the GP-CLF-SOCP to multi-input systems.
Comparison between GP-CLF-SOCP, CLF-QP(Model), and CLF-QP(Plant).
The sampling time is set as 20ms, and the comptutation time of the GP-
CLF-SOCP per timestep is 10.3±1.9ms (max: 20.4ms). Number of training
data points for GP-CLF-SOCP: 961.

This permits the formulation of the so-called GP-CLF-SOCP,
which is solved online to obtain an exponentially stabilizing
controller with probabilistic guarantees. After testing it on
the numerical simulation of two different systems, we obtain
a clear improvement with respect to the nominal model-based
CLF-QP and we are able to closely match the performance
of the true plant-based controller.
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[10] T. Westenbroek, F. Castañeda, A. Agrawal, S. S. Sastry, and
K. Sreenath, “Learning min-norm stabilizing control laws for systems
with unknown dynamics,” in IEEE Conference on Decision and
Control, 2020, pp. 737–744.

[11] F. Berkenkamp, R. Moriconi, A. P. Schoellig, and A. Krause, “Safe
learning of regions of attraction for uncertain, nonlinear systems with
gaussian processes,” in IEEE Conference on Decision and Control,
2016, pp. 4661–4666.
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