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Abstract— We study a quadrotor with a cable-suspended
load, where the cable length can be controlled by applying
a torque on a pulley attached to the quadrotor. A coordinate-
free dynamical model of the quadrotor-pulley-load system with
nine degrees-of-freedom and four degrees-of-underactuation is
obtained by taking variations on manifolds. Under the assump-
tion that the radius of the pulley is much smaller than the length
of cable, the quadrotor-pulley-load system is established to be a
differentially-flat system with the load position, the quadrotor
yaw angle and the cable length serving as the flat outputs.
A nonlinear geometric controller is developed, that enables
tracking of outputs defined by either (a) quadrotor attitude, (b)
load attitude, (c) load position and cable length. Specifically, the
design of the controllers for load position and cable length are
taken into consideration as a whole unit due to the dynamical
coupling of the quadrotor-pulley-load system. Stability proofs
for the control design in each case and a simulation of the
proposed controller to navigate through a sequence of windows
of varying sizes is presented.

I. INTRODUCTION

A wide range of applications of unmanned aerial vehicles
(UAVs), such as quadrotors, hexacopters and octocopters,
have been used to transport external loads in the recent
years. To accomplish a reliable and efficient transportation
using small UAVs, researchers have applied various methods
in design, path planning, and control. One such method is,
where the payload is attached to the aerial robot through a
gripper arm [7]. Such a mechanism provides more degrees-
of-freedom (DOFs) to the UAV system and increases the
number of control inputs as well. However, carrying an
external load through a gripper increases the inertia of the
system and results in the quadrotor having a sluggish attitude
response, making it less robust to perturbations.

An alternative method is to carry a payload suspended
through a cable. Early work has focussed on minimization
of swing-free maneuvers and trajectory generation to meet
various aerial manipulation objectives [8]. Control design
for the suspended-load using a single quadrotor was studied
in [9], [11], [13]. Dynamics and planning for a payload
suspended through cables from multiple quadrotors was
carried out in [10], while the control design was carried
out in [6], [14]. Recently, control of a quadrotor with load
suspended through an elastic cable was studied in [4].

While all previous work regarded the cable length as
invariant or indirectly changeable due to the elasticity in the
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Fig. 1. Quadrotor with a cable-suspended payload with the cable length
controlled by a pulley. The configuration space of the system is SO(3)×S2×
R×R3, with 9 degrees-of-freedom and 5 actuators, resulting in 4 degrees-of-
underactuation. Our control of this quadrotor-pulley-load system is designed
based on the assumption that the radius of pulley is far smaller than the cable
length: r� L. The simplicity and necessity of this assumption is explained
in Remark 3. An inset of the pulley structure is also presented with the
orientation of pulley’s shaft being bp, which is perpendicular to b3.

cable, we are motivated by the consideration: what if the
cable length can be purposely altered by a mechanism, such
as a pulley. This quadrotor-pulley-load system not only adds
an additional DOF but also introduces additional challenges:

• A variable-length cable introduces coupled dynamics
between the load position and the cable length, since the
torque exerted from the pulley affects the load position
dynamics and the cable length dynamics.

• The variable length of cable introduces a Coriolis force
that affects the load attitude.

• The differential flatness properties need to be re-
established by using a set of flat outputs, based on the
assumption r� L.

However, introducing the pulley mechanism into the
quadrotor-load system has advantages in path planning. Pre-
vious work on path planning for quadrotor with suspended
load focused on using Mixed Integer Quadratic Programs
(MIQPs) [12] or an iterative LQG (iLQG) algorithm [2] to
generate collision-free quadrotor-payload trajectories. How-
ever, with a pulley mechanism we can alter the cable
length to more easily avoid obstacles, instead of having the
quadrotor move aggressively. This allows us to navigate tight
regions such as maneuvering through windows. Moreover,
the varying cable length enables payload drop off and pickup
without the quadrotor having to physically move up and
down, resulting in a potentially safe and energy-efficient
motion.

The main contributions of this paper with respect to prior



B, W Body-fixed and world frame
mQ ∈ R Mass of quadrotor
mL ∈ R Mass of suspended load
JQ ∈ R3×3 Inertia matrix of the quadrotor in B
JP ∈ R Principal moment of inertia of pulley along bp
r ∈ R Fixed radius of the pulley
R ∈ SO(3) Rotation matrix from B to W
Ω ∈ R3 Angular velocity of the quadrotor in B
ω ∈ R3 Angular velocity of the suspended load in W
xQ,vQ ∈ R3 Position and velocity vectors of the center of mass

of the quadrotor in W
xL,vL ∈ R3 Position and velocity vectors of the center of load of

the quadrotor in W
f ∈ R Magnitude of the thrust for the quadrotor
M ∈ R3 Moment vector for the quadrotor in B
τ ∈ R Pulley torque magnitude acting on pulley from

quadrotor
q ∈ S2 Unit vector from quadrotor to the load
L ∈ R Variable cable length
e1,e2,e3 ∈ R3 Unit vectors along the x,y,z directions of W
b1,b2,b3 ∈ R3 Unit vectors along the x,y,z directions of B in W
ep ∈ R3 Direction of the pulley’s shaft in B
bp ∈ R3 Direction of the pulley’s shaft in W

TABLE I
VARIOUS SYMBOLS USED IN THE PAPER

work are:

• Development of a coordinate-free dynamical model of
the quadrotor-pulley-load system by applying Lagrange-
d’Alembert principle and considering variations on
manifolds.

• Demonstrating that the quadrotor-pulley-load system is
differentially flat under the assumption r� L.

• Development of geometric controllers, along with for-
mal proofs, for stabilizing quadrotor attitude (Prop. 1),
load attitude (Prop. 2), and load position and cable
length (Prop. 3).

• Numerical validation of the proposed control design to
maneuver through several window-like obstacles with
different sizes by dynamically varying the cable length.

The paper is organized as follows. Section II introduces
the structure of the pulley and then develops a coordinate-
free dynamical model for the quadrotor-pulley-load system.
Section III illustrates and demonstrates the system as a
differentially-flat system. Section IV presents the main ideas
of the geometric controller design. Section V studies the per-
formance of position tracking through numerical simulations.
Finally, Section VI provides concluding remarks.

II. DYNAMICAL MODEL OF A
QUADROTOR-PULLEY-LOAD SYSTEM

A coordinate-free dynamic model for the quadrotor-pulley-
load system is developed next. We consider the system
depicted in Figure 1 with various symbols as defined in Table
I. Since the cable length is controlled by a pulley placed at
the center-of-mass of the quadrotor, the configuration space
for the system is Q = SO(3)×S2×R×R3, with the degrees-
of-freedom given by the quadrotor attitude R ∈ SO(3), the
unit vector q∈ S2 representing the load attitude, cable length
L ∈ R and load position xL ∈ R3. The system has 5 inputs
comprising of the moment M ∈ R3, the thrust magnitude

f ∈ R and pulley torque τ ∈ R acting on pulley from the
quadrotor.

In order to simplify our system, the pulley radius r is
assumed to be constant and the direction of the shaft is
assumed to be parallel to bp in the inertia frame, with
bp = Rep. The pulley shaft direction bp can be chosen as any
arbitrary unit vector orthogonal to b3. By varying the pulley’s
torque, the cable can be lengthened or shortened, depending
on the functional requirements of the UAV’s application.

The quadrotor and load positions are related by the fol-
lowing geometric relation,

xQ = xL−Lq−bp×
q− (q ·bp)bp

||q− (q ·bp)bp||
r. (1)

To simplify our problem, we propose an assumption r� L
which simplifies the previous kinematic relation (1) to

xQ = xL−Lq. (2)
The necessity of this assumption will be explained in Remark
4. We next derive the coordinate-free dynamical model of the
system.

The Lagrangian for the system is defined by L =T −U ,
where T and U are kinetic and potential energies of the
mechanism, respectively, and are defined as,

T =
1
2

mQ||vQ||2 +
1
2

mL||vL||2 +
1
2

〈
Ω̂,

∧

JQΩ

〉
+

1
2

JP(
L̇
r
)2, (3)

U = mQge3 · xQ +mLge3 · xL. (4)

Here, the hat map ·̂ : R3 → so(3) is defined as x̂y = x×
y,∀x,y ∈ R3, we also use the vee map

∨· : so(3)→ R3 to
represent the inverse of the hat operator.

The equations of motion can then be found by using
Lagrange-d‘Alembert principle of least action, which states
that the variation of the action integral is equal to the
negative virtual work done by the external forces and non-
conservative forces. The equation of Lagrange-d’Alembert
principle applied to the quadrotor-pulley-load system can be
written as,

δ

∫ t1

t0
L dt +

∫ t1

t0

〈W1,

∧

M− τep

〉
+W2 · τ +W3 · f Re3

dt = 0 (5)

where

W1 = RT
δR, W2 =

δL
r
, W3 = δxQ,

are the variational vector fields related to quadrotor attitude,
pulley rotation and quadrotor position respectively. Here, the
moment vector acting on the quadrotor from the pulley is
−τep where τ is the torque on the pulley.

Some relations of infinitesimal variations are presented,
δR = Rη̂ ,δΩ = Ωη + η̇ ,η ∈ R3,

δxL = δxQ +(δL)q+L(δq),(δxL,δxQ) ∈ R3,δL ∈ R,
δvL = δvQ +( ˙δL)q+(δL)q̇+ L̇(δq)+L(δ̇q),

δq = ξ ×q,ξ ∈ R3s.t.ξ ·q = 0,δ q̇ = ξ × q̇+ ξ̇ ×q.
By solving (5), see Appendix A, we develop the dynamic
model for the nonzero cable tension case.



A. Dynamical Model with Nonzero Cable Tension

The equations of motion for the quadrotor-pulley-load
system are obtained as

ẋL = vL, (6)
q̇ = ω×q, (7)

mQLω̇ =−q× f Re3−2mQL̇ω, (8)

Ṙ = RΩ̂, (9)

JQΩ̇ = M− τep−Ω× JQΩ, (10)

D
[

v̇L +ge3
L̈

]
+H =

[
(q · f Re3) ·q

τ

]
, (11)

where D and H are shown below,

D =

[
(mQ +mL)I3 −mQq

mLrqT JP/r

]
, (12)

H =

[
mQL(q̇ · q̇)q

0

]
. (13)

Here, we have the determinant of matrix D,

det(D) =
1
r
(Jp(mQ +mL)+mQmLr2), (14)

is always positive which implies D can always be inverted.
In the equations above, (7)-(8) ratilluste the load attitude
dynamics and (9)-(10) illustrate the quadrotor attitude dy-
namics. Moreover, (11) illustrates the dynamic coupling be-
tween the load position and the cable length. This dynamical
coupling will motivate our control design in Section IV. Note
that the tension in the cable can be determined as

T = mL(ge3 + ẍL). (15)
Remark 1: When the tension in the cable becomes zero,

the quadrotor will be decoupled from the load. In the zero-
tension case, the dynamical model becomes the same as one
shown in [11].

Remark 2: Note that there is no relationship between the
the cable tension being zero and the pulley torque. This can
be seen through the relation obtained from (11) and (15):

τ = rqT T +
JP

r
L̈. (16)

Therefore, even when the pulley torque becomes zero, the
cable tension will be non-zero and the payload will fall
slower than −ge3 due to the non-zero inertia of the pulley.
To make the payload free fall (zero cable tension), we need
to have a positive magnitude of torque τ .

III. DIFFERENTIAL FLATNESS

A system is differentially flat, if there exists a set of
outputs such that the system states and the inputs can be
expressed in terms of the flat output and a finite number
of its derivatives. Here we will briefly present differential
flatness for the quadrotor-pulley-load system.

Lemma 1: Under the assumption that the radius of the
pulley is much smaller than the length of the cable r� L, the
quadrotor-pulley-load system is a differentially flat system.
Precisely, Y1 = (xL,ψ,L), is a set of flat outputs for the above
system, where ψ ∈ R is the yaw angle of the quadrotor.

Proof: From the flat outputs and their higher-order
derivatives, the tension in the cable can be determined from
(15), and the unit vector q can be determined as q =

−T
||T ||

.

Under the assumption r� L, the quadrotor position can then
be determined using (2). R,Ω, f can then be determined from
the knowledge of xQ,ψ and their higher-order derivatives,
since (xQ,ψ) are flat outputs for a quadrotor as shown in
[5]. From the equations of motion, the remaining M,τ can
be determined from the knowledge of R,Ω,L,xL and their
higher-order derivatives.

Remark 3: The quadrotor moment, M, depends on the
6th derivative of load position xL and 6th derivative of
cable’s length L, while the pulley torque depends on the 2nd

derivative of xL and 2nd derivative of L. This fact will be
utilized for designing trajectories in Section V.

Remark 4: If we use (1) as the kinematic relation between
the quadrotor and the load position the above differential
flatness property is not valid anymore and (xL,ψ,L) are no
longer the flat outputs as shown next. Notice that the unit
vector bp can be calculated as bp = Rep, where R depends
on the 2nd derivative of xQ as proved in [5]. This can
be expressed as bp = h(ẍQ), where h(·) is a function that
captures this relation. If we use the full kinematic model,
(1) then becomes

xQ = xL−Lq−h(ẍQ)×
q− (q ·h(ẍQ))

||q− (q ·h(ẍQ))||
r. (17)

The quadrotor position xQ(t) can not be solved from this
equation without integrating the above differential equation.
Thus, to make the system become differentially flat, a
simplification from (1) to (2) is necessary.

IV. GEOMETRIC CONTROL DESIGN

Having discussed the dynamics of the quadrotor-pulley-
load system and showing that the load position and the
cable’s length form a set of differentially-flat outputs for
the system, we now develop a controller which can be used
to track one of the following states (a) quadrotor attitude
in Prop.1, (b) load attitude in Prop.2, and (c) load position
and cable length in Prop.3. Figure 2 illustrates the inner-
outer loop controller structure for the load position and cable
length tracking.

Before proceeding to describe the different controllers,
we first define the configuration error for different states.
Suppose a smooth desired quadrotor attitude tracking com-
mand (Rd(t),Ωd(t))∈ T SO(3) is given. Then the real-valued
configuration error function ΨR : SO(3)× SO(3) → R is

defined as ΨR =
1
2

Tr(I−RT
d R), see [1]. The configuration

error ΨR has a maximum value of 2, when R and Rd have the
opposite direction, and becomes zero when R = Rd . Based
on this notation, the vector error functions eR and eΩ on
TRSO(3) are defined by, see [1],

eR =
1
2
(RT

d R−RT Rd)
∨, eΩ = Ω−RT RdΩd . (18)

Similar to [5], the configuration error for the S2 manifold is
given as Ψq = 1−qT

d q, where qd is the desired load-attitude,
and vector error functions for q and q̇ are given as follows,

eq = q̂2qd , eq̇ = q̇− (qd× q̇d)×q. (19)
Error functions for position and velocity of the load are,

ex = xL− xd
L, ev = vL− vd

L, (20)



Fig. 2. Controller structure for tracking load position. Notice that the
desired values are calculated in the inner loop controller, such as qc and
Rc, while the actual states are feedback for each part of the controllers, for
example, L, q, R. The calculated outputs for the system are M, τ and f .

where xd
L and vd

L are the desired position and velocity of the
load. Error function for cable length is defined as,

eL = L−Ld , (21)
where Ld(t) is the desired cable length as a function of time.
Higher order error are also defined as follow,

ėL = L̇− L̇d , ëL = L̈− L̈d . (22)

Proposition 1: (Almost Global Exponential Stability of
Quadrotor Attitude Controlled Flight Mode)

Consider the quadrotor dynamical model in (9)-(10). We
introduce a nonlinear controller for the attitude controlled
flight mode, described by an expression for the moment
vector:

M =− kR

ε2 eR−
kΩ

ε
eΩ +Ω× JQΩ

− JQ(Ω̂RT RdΩd−RT RdΩ̇d)+ τep,
(23)

for any positive constants kR, kω and 0 < ε < 1.

Further, suppose the initial condition satisfies
ΨR(R(0),Rd(0))< 2, (24)

||eΩ||2 <
2

λM(JQ)

kR

ε2 (2−ΨR(R(0),Rd(0))). (25)

In this case, the zero equilibrium of the closed loop tracking
error (eR,eΩ) = (0,0) is exponentially stable. Furthermore,
there exist constants αR, βR > 0 such that,

ΨR(R(t),Rd(t))≤ min{2,αRe−βRt}. (26)

Remark 5: The controller (23) is a geometric version of
PD control along with a feedforward term. We have an
additional term τep which represents the additional moment
compensating the moment on the quadrotor from pulley
shown in (10).

Proof: With the exception of the additional torque τep,
the control design is from [11, Prop. 1] by defining kε

R =
kR

ε2 , kε
Ω
=

kΩ

ε2 . The parameter ε is introduced to enable rapid
exponential convergence.

Proposition 2: (Almost Global Exponential Stability of
Load Attitude Controlled Flight Mode) Consider the load
attitude dynamics given by (7)-(8) along with the quadrotor
attitude dynamics (9)-(10), and consider the desired quadro-
tor attitude as,

Rc := [b1c;b3c×b1c;b3c], Ω̂c = RT
c Ṙc, (27)

where b3c ∈ S2 is defined by

b3c =
F
||F ||

, (28)

F = Fn−Fpd−Ff f , (29)

where Fn, Fpd , Ff f are defined respectively as
Fn =−(qd ·q) ·q, (30)

Fpd =−kqeq− kq̇eq̇, (31)
Ff f = mQL〈q,ωd〉ω +mQLω̇d×q+2mQL̇(ω×q), (32)

where ωd represents the desired angular velocity of load
attitude. We choose b1d ∈ S2 not parallel to b3c and define

b1c =−
1

||b3c×b1d ||
(b3c× (b3c×b1d)), (33)

and the quadrotor thrust is computed as,
f = F ·Re3, (34)

with the quadrotor moment defined by (23) with the com-
puted values, Rc , Ωc used instead of the the desired ones.
Suppose the initial conditions satisfy

Ψq(q(0),qd(0))< 2, (35)

||eq̇(0)||2 <
2

mQL
kq(2−Ψq(q(0),qd(0))), (36)

then there exists ε̄q, such that for all 0 < ε < ε̄q, the zero
equilibrium of the closed loop tracking error (eq,eq̇,eR,eΩ)=
(0,0,0,0) is exponentially stable. Furthermore, there exist
constants αq,βq > 0 such that,

Ψq(q(t),qd(t))< min{2,αqe−βqt}. (37)
The domain of attraction is characterized by (24), (25), (35),
(36). Moreover, the region of the state space T S2×T SO(3)
that does not converge to the equilibrium is of measure zero,
resulting in almost global exponential stability.

Proof: A very similar control design can be found
[11, Prop. 2] and the only difference between our controller
and the one in [11, Prop.2] is specified in (32), where the
term 2mQL̇(ω×q) is added to compensate the Coriolis force
in (8) that is due to the variable-length cable. Note that
this proof of stability is based on the slow model (model
without quadrotor attitude dynamics) [1, Lemma 11.23]
and established through a singular perturbation argument
(Tychnoff Theorem) [3, Thm. 11.2].

Proposition 3: (Exponential Stability of Load Position
and Cable Length Controlled Flight Mode) Considering the
coupled dynamics in (11), we introduce a PD controller for
the the load position and cable length controlled flight mode,
described by two expressions for A and τ[

A
τ

]
= D

[
v̇d

L +ge3− kxex− kvev
L̈d− kLeL− kL̇ėL

]
+H, (38)

where kx, kv, kL, kL̇ are strictly postive and the computed
load attitude is,

qc =−
A
||A||

, (39)

and we assume that ||A|| 6= 0 and the commanded accelera-
tion is uniformly bounded such that,

||D11(v̇d
L +ge3)+D12L̈d +mQL(q̇ · q̇)q|| ≤ B, (40)

where Di j are the ith row jth column submatrices of D in
(12). Furthermore, define Fn in (30) as

Fn = (A ·q) ·q. (41)
Let the computed quadrotor attitude be defined by (27), (28),
with the quadrotor thrust and moment defined by (23) and
(34), with the desired quadrotor and load attitude replaced
by their computed values, Rc and qc respectively. Further,



suppose the initial conditions of load attitude, load position
and cable length satisfy

Ψq(q(0),qc(0))< ψ1 < 1, (42)
||ex(0)||< exmax , ||ev(0)||< evmax , (43)
|eL(0)|< eLmax , |ėL(0)|< |eL̇max

|, (44)
for a fixed constant exmax , evmax , eLmax , eL̇max

and ψ1. We
introduce positive constants k′x, k′v, k′L, k′L̇ and B′,

k′x
kx

=
k′v
kv

=

∥∥∥∥D−1
[

D11
0

]∥∥∥∥
2
< 1,

k′L
kL

=
k′L̇
kL̇

=

∥∥∥∥D−1
[

D12
0

]∥∥∥∥
2
< 1,

(45)

where the boundedness of (45) can be verified by using the
positiveness of det(D). According to the uniform bounded-
ness in (40), B′ ∈ R is defined to satisfy

B′ =
∥∥∥∥D−1

[
I3
0

]∥∥∥∥
2
. (46)

Define WL,Wx ∈ R2×2 and Wlq,Wxq ∈ R2 as,

Wx =

 c1(kx− k′xα) −1
2

c1(kv + k′v)

−1
2

c1(kv + k′v) kv− k′v− c1

 , (47)

Wxq =

[
c1B′

k′xexmax +B′

]
, (48)

WLq =

[
c2B′

k′LeLmax +B′

]
, (49)

WL =

 c2(kL− k′Lα) −1
2

c2(kL̇ + k′L̇)

−1
2

c2(kL̇ + k′L̇) kL̇− k′L̇− c2

 , (50)

where α :=
√

ψ1(2−ψ1), and c1,c2 are positive constant
such that,

c1 < min
{

kv− k′vα,
√

kx,
4(kx− k′xα)(kv− k′vα)

(kv + k′v)2 +4(kx− k′xα)

}
, (51)

c2 < min
{

kL̇− k′L̇α,
√

kL,
4(kL− k′Lα)(kL̇− k′L̇α)

(kL̇ + k′L̇)
2 +4(kL− k′Lα)

}
, (52)

λm(Wq)> max
{
||WLq||2

2λm(WL)
,
||Wxq||2

2λm(Wx)

}
. (53)

Then, there exists ε̄x, such that for all 0 < ε < ε̄x,
the zero equilibrium of the closed loop tracking error
(eL,eL̇,ex,ev,eq,eq̇,eR,eΩ) = (0,0,0,0,0,0,0,0) is exponen-
tially stable. The domain of attraction is characterized by
(35), (36) with the desired values replaced by the computed
values, (42), and

||eq̇||<
2

mQl
kq(ψ1−Ψq(q(0),qd(0))). (54)

Proof: This proposition is motivated by [11, Prop. 3]
which was proving exponential stability of the quadrotor-
load system through a singular perturbation argument. Here
we address the quadrotor-pulley-load system, where another
degree-of-freedom for the variable-length cable is added. See
detailed proof in Appendix B.

V. NUMERICAL SIMULATION

Having developed the geometric dynamics and control of
the quadrotor-pulley-load system with the additional degree-
of-freedom for cable length, we can do path planning and
control in more complex environments. In particular, we
consider manipulating the quadrotor-pulley-load system to

0 2 4 6 8 10
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0.3
Interpolated flat output

Three Windows

Fig. 3. Evolution of desired cable length (blue) required to pass three
given windows during 10 seconds. Note that the desired cable length when
passing the windows (red) is exactly one third of window’s height to ensure
safety.

pass through window-like obstacles with different heights, a
common scenario to test path planning for obstacle avoidance
[2], [12]. The window height can be chosen to be smaller
than the cable’s initial length, forcing the quadrotor to pull
up the load by decreasing the cable length to allow it to pass
through the windows.

Since the quadrotor-pulley-load system is differentially flat
under the assumption r� L, we can plan and study trajec-
tories directly in the flat space. We do this by parametrizing
the flat outputs as functions of time with a suitable basis
and solve an optimization problem to obtain the coefficients
of the basis. To illustrate our performance, we aim to
manipulate the quadrotor to adjust its cable length to pass
through three windows by tracking a specific trajectory. The
positions (Xi), widths (Wi) and heights (Hi) of the three
windows are given below,

X1 = (Ax,Ay,Az +Z0), W1 = 0.4m, H1 = 0.6m,

X2 = (2Ax,0,Z0), W2 = 0.4m, H2 = 0.3m,

X3 = (Ax,−Ay,−Az +Z0), W3 = 0.4m, H3 = 0.6m.
In consideration of passing through the three windows, we
choose the flat outputs as follows.

xd
L(t) =

[
Ax(1− cos(

2πt
T

)),Aysin(
2πt
T

),Azsin(
2πt
T

)+Z0

]T
, (55)

ψd(t)≡ 0, (56)
where T is the time period of the circular orbit of the load

trajectory. Numerically we choose T = 10s, Ax = 3m, Ay =
3m and Az = 2m.

In order to maneuver through these obstacles, we need to
specify different desired cable length for each pass. Here we
choose 0.2m, 0.1m, 0.2m respectively, which are one third
of each window’s height. As the function Ld(t) needs to be
high-order differentiable according to Remark 2, one choice
of flat outputs of cable length is given as follows, illustrated
in Figure 3,

Ld(t) =−
1

1875
t4 +

4
375

t3− 91
1500

t2 +
11

150
t +

1
4
. (57)

This expression of desired cable length is calculated by inter-
polation from the Polynomial Toolbox in Matlab, such that
it satisfies the desired cable lengths when passing through
each window. While we used a polynomial basis here, other
basis such as sinusoidal basis can also be used.

We consider a realistic experimental platform with mQ =
0.5kg, mL = 0.087kg, JQ = diag(2.32,2.32,4)×10−3kg ·m3,
JP = 3× 10−4kg ·m3 and r = 0.03m. We also assume that
the thrust and the moment of quadrotor are bounded, with
| f | ≤ 10N and ||M|| ≤ 2N ·m.
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Fig. 4. Snapshots of the quadrotor along the executed motion (blue) as
it tracks the desired load position (red). Notice the large initial errors in
load position and cable length. The initial cable length is 1m with the cable
length varying to pass through the windows.
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Fig. 5. Error in load position tracking. Notice that the position error in
direction z is rejected more quickly than the other directions.

We present a simulation with the initial condition speci-
fying errors in load attitude, load position and cable length.
Specifically, the initial cable length is 1m and there is about
1m initial load position error and the load attitude is released
from 45◦. A desired time-varying load position trajectory,
yaw angle and cable length are shown in (55)-(57) and the
system is simulated with the controller in Proposition 3.
Figure 4 illustrates the trajectory of the load as it converges
to the desired load position trajectory as well as snapshots
of the quadrotor when passing through windows. Figures 5,
6 illustrate the load position and cable length error, while
Figure 7 illustrates the configuration error for the quadrotor
and the load attitude. Note that the double peaks in Ψq occur
due to the controller implementation of using the nominal
desired quantities Ṙd , R̈d , q̇d , q̈d from differential flatness
instead of the computed values Ṙc, R̈c, q̇c and q̈c. The
computed inputs are shown in Figure 8.
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Fig. 6. Error in cable length tracking exponentially decaying to zero.
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Fig. 7. Configuration error functions for the quadrotor attitude and the
load attitude. In this simulation, the controller rejects initial attitude errors
of 45◦ in both the quadrotor and load attitudes.
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Fig. 8. Inputs for the load tracking of the trajectory shown in Figure 4.
We observe that the errors decay exponentially even with a saturated thrust
f and moment M.

VI. CONCLUSION

We have presented a coordinate-free development of the
dynamics of a quadrotor with a variable length cable-
suspended load, where the cable length can be changed by
varying the torque on a pulley attached to the quadrotor. The
differential flatness of the quadrotor-pulley-load system is
shown based on the assumption r� L and has been utilized
to design nominal trajectories. A nonlinear geometric control
design was presented that enabled tracking of either the
quadrotor attitude, the load attitude, or the load position and
the cable length. The stability of the proposed controllers
were formally proved and the controllers were numerically
validated through a concrete scenario of passing through
windows with different heights.

APPENDIX

A. Derivation of the dynamics for the quadrotor-pulley-load
system

In this section we present the detailed derivation of the
compact equations of motion on manifolds for the quadrotor-



pulley-load system.
δ

∫ t1

t0
(

1
2

mQvQ · vQ +
1
2

mLvL · vL +
1
2
〈Ω,JQΩ〉

+
1
2

JP(
L̇
r
)2−mQge3 · xQ−mLge3 · xL)dt

+
∫ t1

t0

(
〈RT

δR,
∧

M− τep〉+
δL
r
· τ +(δxL−δL ·q−Lδq) · f Re3

)
dt = 0

By using the relations of infinitesimal variations to substitute
the terms of δxQ, δ ẋQ, δ ẍQ, we have,∫ t1

t0
δ ẋL ·

[
mQ(vL− L̇q−Lq̇)+mLvL

]
+δxL · (−mQge3−mLge3 + f Re3)dt

+
∫ t1

t0
δ L̇ ·

[
−mQq(ẋL− L̇q−Lq̇)+

JPL̇
r2

]
+δL ·

[
−mQq̇(v̇L− L̇q−Lq̇)+mQgqe3 +

τ

r
−q · f Re3

]
dt

+
∫ t1

t0
δ q̇ ·

[
−mQ(vL− L̇q−Lq̇)L

]
+δq ·

[
−mQ(vL− L̇q−Lq̇)L̇+mQgLe3−L f Re3

]
dt

+
∫ t1

t0
[η̇JΩ+η(M− τep + JQΩ×Ω)]dt = 0

Then we apply the integrations by parts and the dynamical
system derived by the Lagrange-d’Alembert principle can be
written as,∫ t1

t0

(
δxL ·

[
− (mQ +mL)(v̇L +ge3)

+mQ(L̈q+2L̇q̇+Lq̈)+ f Re3
])

dt

+
∫ t1

t0

(
δL ·

[
−mQq(L̈q+2L̇q̇+Lq̈)

+mQq(v̇L +ge3)−
JPL̈
r2 +

τ

r
−q · f Re3

])
dt

+
∫ t1

t0

(
ξ ·
[
q×mQL(v̇L− L̈q−2L̇q̇

−Lq̈)+q× (mQgLe3−L f Re3)
])

+
∫ t1

t0

(
η ·
[
− JΩ̇−Ω× JΩ+M− τep

])
dt = 0.

(58)

Since (58) is always true for all variations δxL, δL, δξ and
δη , we have,

(mQ +mL)(v̇L +ge3) = mQ(L̈q+2L̇q̇+Lq̈)+ f Re3, (59)

−mQq(L̈q+2L̇q̇+Lq̈)+mQq(v̇L+ge3)−
JPL̈
r2 +

τ

r
= q · f Re3, (60)

q× [q×mQL(v̇L− L̈q−2L̇q̇−Lq̈)+q× (mQgLe3−L f Re3)] = 0,
(61)

−JΩ̇−Ω× JΩ+M− τep = 0. (62)

Simplifying these equations results in the equations of
motion given in (8), (10), (11).

B. Proof for Proposition 3

We will consider the slow model and carry out the
subsequent analysis in the domain D ,

D ={(eL, ėL,ex,ev,q,eq̇) ∈ R×R×R3×R3×L1×R3 |
|eL|< eLmax , ||ex||< exmax}

(63)
where the load attitude is restricted to be in the sublevel set
L1 = {q ∈ S2 | Ψq(q,qc)< 1}.

1) Translational and Cable Length Error Dynamics for
Slow Model: Similar to [11, Appendix B], we introduce
X ∈ R3, representing the error between (q · f Re3)q and

(q · f Re3)qc

qT
c q

, defined by,

X =
q · f Re3

qT
c q

((qc ·q)q−qc), (64)

where we have
q · f Re3 = q ·F = q · (Fn−Fpd−Ff f )

= A ·q =−||A||qc ·q.
(65)

Then, ||X || is bounded by the multiplication between the
norms of A and the error of load attitude eq,

||X || ≤ ||A|| · ||((qc ·q)q−qc)||. (66)
Substituting (64) into (11), we have[

A+X
τ

]
= D

[
v̇L +ge3

L̈

]
+H. (67)

In addition to the controller defined in (38), the translational
and cable length error dynamics can be written as,[

ėv
ëL

]
=

[
−kxex− kvev
−kLeL− kL̇ėL

]
+D−1

[
X
0

]
. (68)

Considering the coupled controller presented in (38),
||A||=||[D11(v̇d

L +ge3)+D12L̈d +mQL(q̇ · q̇)q]
−D11(kxex + kvev)−D12(kLeL + kL̇ėL)||
≤B+ ||D11||2(kx||ex||+ kv||ev||)+ |D12|(kL|eL|+ kL̇|ėL|).

The bound of ||X || can then be found by substituting the
above bound on ||A|| into (66), resulting in,

||X || ≤(B+ ||D11||2(kx||ex||+ kv||ev||)
+ |D12|(kL|eL|+ kL̇|ėL|))||eq||.

(69)

Thus, the translational and cable length error dynamics in
(68) can be simplified by substituting (69) into (68).[

ėv
ëL

]
=

[
−kxex− kvev +X1
−kLeL− kL̇ėL +X2

]
, (70)

where X1 ∈ R3 and X2 ∈ R are defined as
[

X1
X2

]
= D−1

[
X
0

]
,

satisfying
||X1|| ≤ (B′+ k′x||ex||+ kvev)||eq||,
|X2| ≤ (B′+ k′L|eL|+ k′L̇|ėL|)||eq||,

(71)

where k′x,k
′
v,k
′
L,k
′
L̇,B
′ are defined in (45) and (46). In the

following subsection, we define a Lyapunov Candidate for
the error dynamics along the solution in (70).

2) Lyapunov Candidate for Translation Dynamics: Con-
sider the Lyapunov candidate Vx,

Vx =
1
2

kx||ex||2 +
1
2
||ev||2 + c1exev, (72)

where c1 is a positive constant. The derivative of Vx along
the solution of (70) is given by

V̇x =kxex · ev + ev · (−kxex− kvev +X1)+ c1ev · ev

+ c1ex(−kxex− kvev +X1)− c1kxe2
x

− (kv− c1)e2
v− c1kvexev +X1(ev + c1ex).

Since the bound of ||X1|| is represented in (71), thus we
have,

V̇x ≤− c1kxe2
x − (kv− c1)e2

v − c1kvexev

+(k′x||ex||+ k′v||ev||+B′)||eq||(ev + c1ex)

≤− c1(kx− k′xα)e2
x − (kv− c1− k′vα)e2

v + c1(kv+

k′v)||exev||+ ||eq||{k′x||ex||||ev||+ c1B′||ex||+B′||ev||}.

(73)

In the above expression, there is a third-order term,
k′x||ex||||ev||||eq||. Since we restrict our analysis to the do-
main D defined in (63), an upper bound for this term is
k′xexmax||ev||||eq||.



3) Lyapunov Candidate for Cable Length Dynamics:
Similarly, consider the Lyapunov candidate VL,

VL =
1
2

kL|eL|2 +
1
2
|ėL|2 + c2eLėL, (74)

where c1 is a positive constant. The derivative of Vx along
the solution of (70) is given by

V̇L =kLeL · ėL + ėL · (−kLeL− kL̇ėL +X2)+ c2ėL · ėL

+ c2eL(−kLeL− kL̇ėL +X2)− c2kLe2
L

− (kL̇− c2)ė2
L− c2kL̇eLėL +X2(ėL + c2eL).

Since the bound of |X2| is represented in (71), thus we have,
V̇L ≤− c2kLe2

L− (kL̇− c2)ė2
L− c2kL̇eLėL

+(k′L|eL|+ k′L̇|ėL|+B′)||eq||(ėL + c2eL)

≤− c2(kL− k′Lα)e2
L− (kL̇− c2− k′L̇α)ė2

L + c2(kL̇+

k′L̇)|eLėL|+ ||eq||{k′L|eL||ėL|+ c2B′|eL|+B′|ėL|}.

(75)

In the above expression, there is a third-order term,
k′L|eL||ėL|||eq||. Since we restrict our analysis to the do-
main D defined in (63), an upper bound for this term is
k′LeLmax|ėL|||eq||.

4) Lyapunov Candidate for the Slow Model: Let V =Vx+
Vq +VL be the Lyapunov candidate for the slow model and
the expression of Vq can be found [11, Appendix A]. Then,
from (72), (73), (74), (75), we have,
zT

x Mxzx + zT
q Mqzq + zT

L MlzL ≤V ≤ zT
x MX zx + zT

q MQzq + zT
L MLzL,

V̇ ≤−zT
x Wxzx + zT

x Wxqzq− zT
LWLzL + zT

LWLqzq− zT
q Wqzq,

where zx = [||ex||, ||ev||]T , zL = [|eL|, |ėL|]T , and the matrices
Wx,Wxq,WL,WLq are as in (47), (48), (50), (49), while Mx,
MX , Ml , ML are defined as

Mx =
1
2

[
kx −c1
−c1 1

]
,MX =

1
2

[
kx c1
c1 1

]
, (76)

Ml =
1
2

[
kL −c2
−c2 1

]
,ML =

1
2

[
kL c2
c2 1

]
. (77)

5) Exponential Stability: From [11, Proposition 2], the
matrices Mq, MQ, Wq are positive definite, while (51), (52)
ensure positive-definiteness of Mx, MX , Ml , ML. Then the
candidate Lyapunov function V is positive-definite, and

V̇ ≤−λm(WL)||zL||2 + ||WLq||2||zL||||zq||−λm(Wq)||zq||2

−λm(Wx)||zx||2 + ||Wxq||2||zx||||zq||.
(78)

The conditions of Proposition 3, (51), (52) ensures positive-
definiteness of Wx and WL and (53) for negative-definiteness

of V̇ .
Thus the zero equilibrium of the load position track-

ing errors of the slow model is exponentially stable, i.e.,
(ex,ev,eL, ėL,eq,eq̇) exponentially converges to zero while
the dynamics evolve on the slow manifold given by R≡ Rc.
We employ the singular perturbation argument again, which
results in exponential stability of load position and cable
length dynamics for the full model, see [11, Prop. 4].
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[13] S. Tang, V. Wüest, and V. Kumar, “Aggressive flight with suspended
payloads using vision-based control,” IEEE Robotics and Automation
Letters, vol. 3, no. 2, pp. 1152–1159, 2018.

[14] G. Wu and K. Sreenath, “Geometric control of multiple quadrotors
transporting a rigid-body load,” in IEEE International Conference on
Decision and Control, 2014, pp. 6141–6148.


