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Abstract— A quadrotor with a point-mass payload suspended
with an offset from the center-of-mass of the quadrotor to the
suspension point is studied in this paper. This system consists of
eight degrees of freedom and four degrees of underactuation. A
coordinate-free dynamic model is obtained by taking variations
on manifolds. We also establish that under a mild assumption
that the angular acceleration of quadrotor is small, the offset
quadrotor-load system is a differentially-flat system with the
load position and the quadrotor yaw serving as the flat outputs.
A nonlinear geometric control design based on this assumption
is developed. With this controller, the following states (a)
quadrotor attitude, (b) load attitude, and (c) load position
can be tracked. Stability proofs for the controller design, as
well as simulation of the proposed controller are presented. A
comparison of a geometric controller developed for a zero offset
quadrotor-load model is also presented to motivate the need as
well as demonstrate the advantages of our proposed geometric
controller for the offset quadrotor-load model.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs), such as quadrotors,
have led to a variety of applications in society. In the area of
manipulation, quadrotors have been used for transportation
of external loads. There are various approaches in realizing
aerial manipulation and transportation. One of them is using
aerial robots equipped with fixed grippers, where the payload
is rigidly attached to the aerial robot through the gripper,
and the same control technique for flying without a load is
used. These robots are typically characterized by slow, quasi-
static motions for hovering and picking up objects, see [5].
One exception to this is the work on avian-inspired aerial
pickup in [12]. However, carrying an external load through
a gripper increases the inertia of the system considerably
and results in the quadrotor exhibiting a sluggish attitude
response, therefore making it less robust to perturbations.
An alternative method is to suspend loads through a cable, in
order to retain the agility of the aerial vehicle while achieving
the task of transportation of the suspended load. Here the
quadrotors can range in size from centimeters to meters with
payloads up to several kilograms.

We know that cable-suspended systems are underactuated,
and several control approaches have been studied in recent
years. Early research in this area has focused on minimizing
the load swing through a combination of trajectory genera-
tion and active feedback control, see [7], [10]. The idea is
to model the cable as a massless rigid rod when it is taut
and also model the transitions between the cable going from
taut to slack and slack to taut. Hybrid system modelling and
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Fig. 1. A quadrotor with a cable suspended load, where the offset vector
exists from the CoM of the quadrotor to the suspension point S. When the
cable is taut, the system evolves on R3× S2× SO(3), and has 8 degrees
of freedom with 4 degrees of underactuation. The vector r represents the
offset from the CoM of quadrotor to the suspension point S.

differential flatness have been applied to generate desired tra-
jectories. Earlier work in [6] applied a dynamic programming
approach to generate dynamically feasible trajectories. Based
on the massless rigid rod model, prior work in [8], [9] derived
a coordinate-free dynamical model of a single quadrotor
with suspended load and developed a geometric controller
to exponentially track the load position. These results have
been utilized to plan trajectories to avoid collision with
obstacles, see [11]. The problem of geometric control of
multiple quadrotors with a suspended point-mass load [4] or
with a rigid-body load [3], [13] are also studied. Recently,
the dynamics and control of a quadrotor with a point-mass
payload suspended through several flexible cables was also
studied [2].

A critical assumption in all prior work is that the cable is
suspended from the quadrotor’s center-of-mass (CoM), and
no offset vector exists from the CoM of the quadrotor to
the suspension point. In the real world, it’s hard to figure
out where the CoM lies exactly. Even if the position of the
CoM is precisely known, maybe it is impossible for us to
attach a cable at that position. For instance, the CoM could
lie inside the body or battery components. If an offset from
the suspension point to the CoM exists, the cable not only
exerts additional moment on the quadrotor, resulting in the
quadrotor attitude dynamics being coupled to load dynamics,
but also breaks the differential-flatness property, which is
a key method used in prior work to generate dynamically-
feasible trajectories [8]. An illustration of a quadrotor with a
load suspended with an offset is presented in Figure 1. In this
paper, we take the offset vector from the CoM of quadrotor
to the suspension point into consideration and the goal is
to investigate the design of controllers for this dynamical



TABLE I
VARIOUS SYMBOLS USED IN THE PAPER

B, W Body-fixed and world frame
mQ ∈ R Mass of quadrotor
mL ∈ R Mass of suspended load
JQ ∈ R3×3 Inertia matrix of the quadrotor in B
R ∈ SO(3) Rotation matrix from the body-fixed frame to inertial

frame
Ω ∈ R3 Angular velocity of the quadrotor in B
ω ∈ R3 Angular velocity of the suspended load in W
xL,vL ∈ R3 Position and velocity vectors of load in W
f ∈ R Magnitude of the thrust for the quadrotor
M ∈ R3 Moment vector for the quadrotor in B
q ∈ S2 Unit vector from the suspension point to the load in

W
L ∈ R Length of cable
e1,e2,e3 ∈ R3 Unit vectors along the x,y,z directions of W
b1,b2,b3 ∈ R3 Unit vectors along the x,y,z directions of B in W
r ∈ R3 Offset vector from the quadrotor’s CoM to the sus-

pension point on the quadrotor in B

model. The contributions of this paper with respect to prior
work are:

• We consider the quadrotor with a cable-suspended load,
where there exists an offset from the center-of-mass
of the quadrotor to the load suspension point. For the
rest of paper, we refer to this dynamical model as the
“offset dynamical model”. We derive the dynamics in
a coordinate-free manner using Lagrange-d’Alembert
principle.

• Based on the assumption of low angular acceleration
of quadrotor, the differential flatness property is estab-
lished for the offset dynamical model and the necessity
of this assumption to build the control design is ex-
plained.

• Under the assumption of low angular acceleration of
the quadrotor, we develop a geometric control design
for the offset dynamical model based on the prior work
[8], and we provide a stability analysis using singular
perturbations.

• We present numerical results of tracking the load po-
sition and compare the offset geometric control design
performance with the prior one to quantitatively evaluate
the advantages.

The paper is organized as follows. Section II develops
a coordinate-free model for the offset dynamical system.
Section III demonstrates that the flat outputs in the zero
offset dynamical system cannot be used as the flat outputs
in the offset dynamical model. To handle this problem,
we assume the angular acceleration of the quadrotor to be
small, so that the differential flatness property for geometric
control design can be retained. Section IV presents the
main result of our geometric control design for the offset
dynamical model. Section V shows the simulation results of
the offset dynamical model for tracking desired trajectories.
In addition, a comparison about the convergence performance
of load position error with the prior work in [8] is studied.

II. DYNAMIC MODEL WITH NONZERO CABLE TENSION

A. Dynamical Model with Nonzero Cable Tension

The configuration of the system is defined by the location
of the load with respect to the inertial frame, the load attitude
and the quadrotor attitude. When the cable is taut, the system
has eight degrees-of-freedom with configuration space Q =
R3 × S2 × SO(3) and four degrees-of-underactuation. The
quadrotor and load positions xQ and xL are related by

xQ = xL−Lq−Rr (1)
where r is the offset vector from the quadrotor’s CoM to the
suspension point on the quadrotor in the body-fixed frame,
q represents the unit vector from the suspension point to the
load and L is the length of cable. Other symbols used in the
paper are defined in Table I.

The method of Lagrange-d’Alembert principle is used to
develop the dynamical equations of motion. The Lagrangian
for the system is defined by L = T −U , where T and
U are kinetic and potential energies of the mechanism,
respectively, and defined as,

T =
1
2

mQ||vQ||2 +
1
2

Ω
T JΩ+

1
2

mL||vL||2, (2)

U = mQge3 · xQ +mLge3 · xL. (3)
As a result of the dynamics of the system satisfying the
Lagrange-d’Alembert principle, we have

δ

∫ t1

t0
L dt +

∫ t1

t0
(〈W1,M̂〉+W2 · f Re3)dt = 0, (4)

where f is the thrust magnitude, M is the moment vector,
and W1 =RT δR, W2 = δxQ = δxL+δRr−Lδq are variational
fields with the infinitesimal variations satisfying,

δR = Rη̂ ,δΩ = Ωη + η̇ ,η ∈ R3, (5)

δq = ξ ×q,δ q̇ = ξ̇ ×q+ξ × q̇,ξ ∈ R3 s.t. ξ ·q = 0, (6)
where δq is a variation on S2, and δR a variation on SO(3).

The equations of motion can be obtained from the above
equations and the fact that (4) is satisfied for all variations δq
and δR. The detailed computation can be found in Appendix
A, resulting in,

A
[

ẍL +ge3
Ω̇

]
=

[
G1
G2

]
u‖+

[
d1
d2

]
+

[
0

M−Ω× JQΩ

]
, (7)

Ṙ = RΩ̂, (8)
q̇ = ω×q, (9)

ω̇ =−q̂u⊥+q× 1
L
(ẍL +ge3−R(Ω̂2 + ˙̂

Ω)r),

(10)
where (7)-(8) describes the coupled dynamics for load posi-
tion and quadrotor attitude and (9)-(10) describes the coupled
dynamics between the load position and load attitude. In
these equations of motion, u‖ = (u · q) · q and u⊥ = −q̂2u
represent the parallel and perpendicular vectorial projection

of u on q, where u =
f

mQL
Re3. The equivalent mass matrix



and inertial tensor are described in matrix A, where

A =

[
A11 A12
A21 A22

]
=

[
mLI3 +mQqqT mQqqT

b r̂
−mQr̂qbqT JQ +mQ(r̂qb)(r̂qb)

T

]
,

(11)

where qb = RT q represents directional vector of the cable in
the body-fixed frame. Other terms in the equations of motion
are presented below,

G1 = mQLqqT , G2 =−mQLr̂qbqT ,

d1 = mQ(qT
b Ω̂

2r−L(ω ·ω))q,

d2 =−mQ(qT
b Ω̂

2r−L(ω ·ω))(r̂qb).

We will refer to the above model as the offset model. If the
offset vector r is zero, the equations of motion turn out to be
the same as [8, Equations (5)-(10)], whose geometric control
design was fully studied in that paper. In the following
sections, we refer to the model with r equal to zero as the
zero offset model.

Remark 1: From (7), we notice that the load position and
quadrotor attitude dynamics are coupled and controlled by
u‖ and M, and their dynamics are decoupled when the offset
vector becomes zero. This means the tension in the cable will
influence both the translational and the rotational dynamics
of the quadrotor. Moreover, we notice that the evolution of
the load attitude depends on the angular acceleration of the
quadrotor’s attitude Ω̇ from (10).

B. Dynamical Model with Zero Cable Tension

When the tension in the cable becomes zero, the quadrotor
will be decoupled from the load, and the load will be in free
fall. The dynamical model in this case is,

ẋL = vL, mL(v̇L +ge3) = 0, (12)
ẋQ = vQ, mQ(v̇Q +ge3) = f Re3, (13)

Ṙ = RΩ̂, JQΩ̇ = M−Ω× JQΩ. (14)
Remark 2: The quadrotor with a cable suspended load is

a hybrid system since the dynamics switch when the tension
in the cable becomes zero, or when the slack cable becomes
taut which implies the tension is reestablished.

III. DIFFERENTIAL FLATNESS

A system is differentially-flat, if there exists a set of
outputs such that the system states and the inputs can be
expressed in terms of the flat output and a finite number
of its derivatives. We explain the differential flatness of the
offset dynamical system by introducing several lemmas.

Remark 3: The flat output Y1 = (xL,ψ), which was proved
to be the set of flat outputs for the zero offset system in [9],
cannot be regarded as the flat outputs for the offset quadrotor-
load system. Here ψ ∈ R is the yaw angle of the quadrotor.

This can be seen as follows: from xL(t), we can compute
the cable tension T := mL(ge3 + v̇L) and the load attitude

q = − T
||T ||

. The quadrotor position can be determined by

xQ(t) = xL(t)− Lq(t)− R(t)r. From [9], we know R(t) is
a function of ẍQ(t) and ψ(t). We thus note R = h(ẍQ,ψ).

Therefore, the geometric relation between xQ and the flat
outputs becomes:

xQ(t) = xL(t)−Lq(t)−h(ẍQ(t),ψ(t))r, (15)
which indicates xQ cannot be solved unless we have ad-
ditional information about ẍQ. Hence the system is not
differentially flat with the flat output Y1.

Lemma 1: When the angular acceleration of quadrotor is
small, we can reestablish the differential flatness property
with flat output Y1 = (xL,ψ).

Proof: For a small time interval ∆t, we can approximate
(15) as

xQ(t +∆t) = xL(t +∆t)−Lq(t +∆t)−R(t)r. (16)
Moreover, under the assumption of low angular acceleration
of quadrotor, we also have,

Ṙ = RΩ̂, R̈ = RΩ̂
2 +R ˙̂

Ω≈ RΩ̂
2.

Similarly for other high order derivatives of R, we have
dnR
dtn = RΩ̂

n−1. (17)

Thus for n ∈ [1,4],
dnxQ

dtn (t+∆t) =
dnxL

dtn (t+∆t)−L
dnq
dtn (t+∆t)−R(t)Ω̂(t)n−1r. (18)

According to [9], these high order derivatives of xQ are
sufficient to calculate all other states and inputs to reestablish
differential flatness. Note that R(t +∆t) is computed from
xQ(t +∆t) and its higher order derivatives.

IV. CONTROL DESIGN

Having computed the dynamics of the system containing
a quadrotor with a cable suspended load attached with an
offset from the CoM, and shown that under the low angular
acceleration assumption, the load position and yaw angle
forms a set of differentially-flat outputs. we will now develop
a controller that can be used for tracking one of the following
quantities (a) quadrotor attitude, (b) load attitude, or (c) load
position.

A. Configuration Errors

Before proceeding to describe the different controllers, we
firstly define the configuration error for different variables.
Given a smooth attitude tracking command Rd(t) ∈ SO(3),
the angular velocity related to the attitude tracking command
can be obtained by the kinematics equation, Ω̇d =RT

d Ṙd . The
real-valued error function on the manifolds SO(3)× SO(3)
is then defined as

ΨR =
1
2

Tr(I−RT
d R). (19)

The configuration error ΨR for the manifold SO(3)×SO(3)
has a maximum value of 2, when the actual rotation matrix
and desired one have the opposite direction and becomes
zero when R = Rd . Based on this notation, the vector error
functions of eR and eΩ on T SO(3) are given by

eR =
1
2
(RT

d R−RT Rd)
∨, eΩ = Ω−RT RdΩd , (20)

where Rd and Ωd are the desired rotation matrix and angular
velocity of the quadrotor.

Similarly, the configuration error for the S2 manifold is
given as Ψq = 1−qT

d q, where qT
d is the desired load-attitude,



Fig. 2. Block diagram of the controller structure. The dashed blocks
illustrate load position, load attitude and quadrotor attitude controllers,
respectively. The inner-outer feedback is presented and two propositions
of stability and convergence (see their proofs at the end of Section IV) are
circled. The orange arrow indicates that the controller is established based
on low angular acceleration of quadrotor, where we ignore a term of Ω̇ for
the control design of (26).

and error functions for q and q̇ are given as follows,
eq = q̂2qd , eq̇ = q̇− (qd× q̇d)×q. (21)

Error functions for position and velocity of the load are
ex = xL− xd

L, ev = vL− vd
L, (22)

where xd
L and vd

L are the desired position and velocity of the
load.

B. Control Algorithm

The geometric controller for the zero offset dynamical
model has been well studied [8]. However, if we apply this
controller to the offset dynamical model, there will be a large
error in tracking the load position, which we illustrate by a
numerical simulation in Section V. Therefore, we need to
propose a control design for the offset dynamical model.
The goal of our geometric controller is to track one of the
following variables (a) quadrotor attitude (b) load attitude
or (c) load position. Figure 2 illustrates the inner-outer loop
controller structure for the load position tracking.

For the later discussion, we call the geometric controller
for the zero offset model described in [8] as CZ and we call
our geometric controller for the offset model described in
Section IV as CO.

The control design operates as shown below,
Step 1: From dynamics in (7), we can compute a feed

forward and PD feedback wrench Wd =

[
Wd1
Wd2

]
, defined as

Wd =

[
ẍd

L +ge3− kxex− kvev

−Ω̂RT RdΩd +RT RdΩ̇d−
kR

ε2 eR−
kΩ

ε
eΩ

]
, (23)

where eR, eΩ, ex, ev are defined in (20) and (22). Note that
Ω̇d ,Rd can be calculated from the differential flatness based
on the assumption of low angular acceleration of quadrotor
as presented in Lemma. 2.

Step 2: Use the desired wrench to calculate the parallel
component of u,

u‖ = [(A11Wd1 +A12Wd2−d1)/||G1||2 ·q] ·q, (24)
and also the desired load attitude

qc =−
A11Wd1 +A12Wd2−d1

||A11Wd1 +A12Wd2−d1||
. (25)

Remark 4: The choice of the control for u‖ follows from
the dynamics in (7), resulting in G1u‖= [(A11Wd1+A12Wd2−
d1) · q] · q since ||G1||2 = mQL and it’s not invertible. This

control design was motivated from work in [13] for multiple
quadrotors, however they employ the Moore-Penrose inverse

of matrix G =

[
G1
G2

]
.

Step 3: Based on this, we are able to cancel out the
effects of load acceleration on the cable attitude using the
perpendicular part of u as follows. From the load attitude
dynamics in (10) and since q is parallel to ẍL +ge3, we can
define a geometric controller for u⊥ as,

u⊥ =− kqeq− kω eq̇−〈q,qd× q̇d〉(q× q̇)

− (qd× q̈d)×q+
1
L

q̂2R(Ω̂2 + ˙̂
Ω)r

≈− kqeq− kω eq̇−〈q,qd× q̇d〉(q× q̇)

− (qd× q̈d)×q+
1
L

q̂2RΩ̂
2r.

(26)

Here we have ignored the last term
1
L

q̂2R ˙̂
Ωr, based on the

assumption of low angular acceleration of the quadrotor. The
configuration error of q is defined in (21) and we use the
calculated load attitude in (25) to represent the desired load
attitude qd in (26). The above approximation is highlighted
in orange in Figure 2.

Step 4: Next, define v = mQL(u‖+u⊥), where u‖ and u⊥

are defined in (24), (26). The thrust of quadrotor is defined
as

f = v ·Re3 = mQL(u‖+u⊥) ·Re3, (27)

and the computed quadrotor attitude is defined as
Rc := [b1c;b3c×b1c;b3c], Ω̂c = RT

c Ṙc, (28)
where b3c ∈ S2 is defined by

b3c =
mQL(u‖+u⊥)
||mQL(u‖+u⊥)||

, (29)

and we choose desired yaw orientation b1d ∈ S2 not parallel
to b3c and define

b1c =−
1

||b3c×b1d ||
(b3c× (b3c×b1d)). (30)

As computed orientation Rc and Ωc are known, we recalcu-
late Wd2 by using Rc, Ωc instead of the desired ones Rd , Ωd
from the differential flatness based on the assumption of low
angular acceleration of quadrotor.

Step 5: Finally, from the dynamics in (7), we can compute
the moment of the quadrotor with a geometric controller as
follows

M = Ω× JQΩ+A21Wd1 +A22Wd2−G2u‖−d2. (31)
Remark 5: In the control design, approximations based on

the assumption of low angular acceleration of quadrotor are
used in Steps 1 and 3. In Step 1, we generate desired states
Ω̇d and Rd based on the assumption of low angular accelera-
tion of the quadrotor and the approximate geometric relation
in (16). If Rd ,Ωd ,Ω̇d were available through a dynamically
feasible planner, then this assumption is not required in Step

1. In Step 3, the canceling term of
1
L

q̂2R ˙̂
Ωr is ignored due

to the same assumption of low angular acceleration of the
quadrotor.

Proposition 1: (Almost Global Exponential Tracking of
Force and Yaw based on the assumption of low angular accel-



eration of Quadrotor) Consider a desired force v to be applied
by a quadrotor with a desired quadrotor yaw orientation b1d ,
defined in Step 4. Also consider the following quadrotor
inputs f ,M, defined in (27), (31), respectively. Then there
exists parameters kR,kΩ and ε̄ such that the errors v− f Re3
and R−Rd tend to be almost exponentially convergent when
ε < ε̄ . Moreover, the convergence rate can be increased by
reducing the value of ε .

Proof: By substituting (31) into (7), we have

ε

[eR

ε
ėΩ

]
=

1
2
(tr(RT Rc)I3−RT Rc)eΩ

−kR
eR

ε
− kΩeΩ

 . (32)

By [8, Prop. 1], there exist suitable positive values for kR,
kΩ and ε̄ such that the R could track Rd exponentially. In
addition, ε plays a role in controlling the convergence rate.

On the other hand, the error between actual and desired
thrust vector of the quadrotor is

f Re3− v = (b3c− (b3 ·b3c)b3) · ||v||. (33)
Since the attitude tracking is exponentially convergent, b3c
will converge to b3, in addition to the boundedness of v, we
have the thrust vector convergent to v exponentially.

Proposition 2: (Almost Global Input-to-State Stability of
Tracking the Load Position and Load Attitude based on
the assumption of low angular acceleration of Quadrotor)
Consider reduced system for load position and attitude,
defined in (7), (9), (10). Also consider the desired force to
be applied by the quadrotor as,

v = mQL(u‖+u⊥), (34)
where u‖ and u⊥ are defined in (24) and (26). Then there
exists gain parameters kx, kv, kq, kq̇ such that the reduced
system tracks the reference output qd , xd

L. When the angular
acceleration of quadrotor is low, this tracking is almost
globally exponentially stable, otherwise we obtain almost
global input-to-state stability.

Proof: When the angular acceleration of the quadrotor
is low, by substituting (24), (26) into (7), (10), we have

ëx =− kxex− kvev, (35)
ëq =− kqeq− kq̇eq̇, (36)

where load position and cable attitude errors are totally
decoupled from each other. Thus we could treat each of them
as independent subsystems. As well-studied in [13], [3], there
exist suitable gains kx, kv, kq, kq̇ to ensure the exponential
convergence.

Since we calculate Wd2 by explicit differential flatness
based on the assumption of low angular acceleration of the
quadrotor and the approximate geometric relation in (16),
when this assumption fails, we obtain an error X , represent-
ing the difference between the approximately calculated Wd2
in (23) and the exact one,

X =Wd2−W exact
d2 . (37)

W exact
d2 is the exact value of Wd2, where we don’t assume the

approximate geometric relation in (16) and the low angular
acceleration of quadrotor. In that case, expressions of Rd , Ωd ,
Ω̇d need to be computed by solving the differential equation
in (15) and we don’t know their explicit expressions. Hence

we cannot present the explicit expression of W exact
d2 .

We also define

Y =
1
L

q̂2R ˙̂
Ωr, (38)

representing the ignored canceling term in (26). By taking the
two approximation errors into account, the error dynamics of
load position and attitude can be written as,

ëx =− kxex− kvev +P(X), (39)
ėω =− kqeq− kω eω +Q(Y ), (40)

where P(X), Q(Y ) are two bounded nonlinear functions,
representing the errors from approximation which influences
the error dynamics of load position and attitude. If the
angular acceleration of the quadrotor is small, we can assume
X = Y = 0, where we have the exponential convergence. If
Ω̇ is not small, our controller only has the input-to-state
stability. In this case, we will observe a bounded final error
of load position ex and load attitude eq.

Remark 6: Since we only have the input-to-state stability
of tracking load position and load attitude instead of expo-
nential stability, a small final error of load position tracking
occurs when the acceleration of the quadrotor is not small.
The peak payload position error depends on how aggressively
the quadrotor moves, which we quantify later in Figure 5.

Proposition 3: (Almost Global Input-to-State Stability of
Tracking the Full System based on the assumption of low
angular acceleration of Quadrotor) Consider the full model
of the system which includes the quadrotor dynamics, with
virtual control v specified in Prop. 1 and f ,M specified in
Prop. 2, Then there exists parameters kx,kv,kq,kq̇,kR,kΩ and
ε̄ , such that when ε < ε̄ , the reference outputs (xd

L,qd ,Rd)
are tracked for the closed-loop full system, based on the
assumption of low angular acceleration of the quadrotor.
If the angular acceleration is not small, the full system is
tracked only with an input-to-state stability property.

Proof: When angular acceleration of quadrotor be-
comes low, by Prop. 1, with properly selected gains kR,kΩ,
there exists ε̄ such that when ε < ε̄ and the quadrotors yaw
angles can be tracked exponentially. By Prop. 2, based on
the assumption of low angular acceleration of the quadrotor,
all configuration errors ex,ev,eq,eω converge exponentially.
Thus it explains the almost exponential convergence of full
state errors, by applying Tychonoff’s theorem [1, Theorem
11.4].

If the angular acceleration of the quadrotor is not low, the
load position and load attitude controllers in Prop. 2 have the
input-to-state stability property. Therefore the full system is
only input-to-state stable.

V. ROBUST ANALYSIS AND SIMULATION

In order to validate the stability of our controller, we
perform a numerical simulation in Matlab. Our goal is try
to track a circular load trajectory with a given desired yaw
angle. The desired load trajectory and yaw angle are taken



TABLE II
SYSTEM PARAMETERS FOR SIMULATION (UNITS IN SI)

Value Value
mL 0.087 mQ 0.5
JQ diag[2.32,2.32,0.4]×10−3 L 1
r [0.05,0.05,−0.05]
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Fig. 3. Snapshots of the quadrotor along the executed motion (blue)
as it tracks the desired load position (red). Notice the large initial errors
in position, load and quadrotor attitude. This shows the convergences
performance of the geometric controller CO for the offset model. In these
snapshots, our goal is track a desired circular load trajectory of a frequency
f = 0.3Hz. We can observe the tiny final error when using offset geometric
controller CO. A star-shaped marker is added to indicate the initial position
of load. The load position tracking in the last 5 seconds are shown from
the top view in Figure 4.

as,

xL(t) =

Ax · [1− cos(2π f t)]
Ay · sin(2π f t)

Az

 , (41)

ψ(t) = 0, (42)
where Ax = Ay = 3 and Az = 0. Other values of system
parameters are shown in Table II.

We consider two controllers CZ and CO representing zero
offset controller and offset controller, and apply them to
our offset dynamical model. The controllers are simulated
to track a desired circular payload trajectory. During the
simulations, the frequency of circular movement f ranges
from 0 to 0.3 and other parameters and initial conditions are
kept in the same for two controllers, specifying the same
large errors in the quadrotor attitude, the load attitude and
the load position. Specifically, the initial load attitude is
supposed as 90◦, and there is also a large initial load position
error. The desired time-varying load position trajectory and
yaw angle are specified in (41), (42) and the system is
simulated with the controller in Prop. 3. Figure 3 illustrates
the convergence to the desired load position trajectory with
our offset geometric controller CO, as well as snapshots of
the quadrotor at fixed times. We also compare the final error
of two controllers in Figure 4. The convergence performance
of our offset geometric controller is better.

To compare the performances of the two controllers an-
alytically, we also present the final error of load position
by using two controllers to track the circular trajectory with
different frequencies in Figure 5. For these two controllers,
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Fig. 4. Final load position tracking error for controller CZ and CO from
top view. The simulations are launched when f = 0.3Hz and the position
error can be observed between the executed motion (blue) as it tracks the
desired load position (red). We can see that controller CO has much better
convergence performance for load position tracking than controller CZ .
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Fig. 5. Final load position error corresponding to several values of f by
using controllers CO and CZ . The error bar indicates the variance of final
error for some cases if it oscillates. We can see that the controller CO is
far better than CZ for any f . Notice that the final error of load position
generated by the controller CO is almost zero when f is small, while the
controller CZ always results in an apparent final error, even if the orbit
frequency is small.

the final error increases in both cases, as the orbit frequency
increases. The geometric controller CO shows advantages on
robustness and stability. On the one hand for aggressively
moving scenario, the zero offset geometric controller CZ
has a final error of 0.6m when f is 0.3Hz. However, our
geometric control is more robust and better rejects the
load position error, with the final error converging to only
0.0067m, which is two orders of magnitude better. On the
other hand, even for stationary case when f = 0Hz, the final
error of load position by using controller CZ doesn’t converge
to zero, while the one using CO has no apparent final error.
Thus our offset geometric controller is recommended to be
used in case of quadrotor with suspended load for both high
speed moving and hovering scenarios, if the offset from the
quadrotor’s center-of-mass to the suspension point cannot be
ignored.

Remark 7: In the experiments, we can typically adjust the
suspension point to the bottom base of the quadrotor so that
the offset only exists in the z direction in the body-fixed
frame. We rerun the simulation with the same initial condi-
tions as above with the offset vector r = [0m,0m,−0.05m].
We find that the final error of load position is 0.0001m
when the frequency f = 0.3Hz when using controller CO,
whereas the error is 0.1m when using controller CZ . This
result motivates us to implement this controller for future



experiments.

VI. CONCLUSION

We have presented a coordinate-free development of the
dynamics of a quadrotor with a cable suspended load, where
the suspension point is at an offset from the CoM. Based on
an assumption of low angular acceleration of quadrotor, we
have built the differential flatness of the system and have uti-
lized it to design nominal trajectories. A nonlinear geometric
control design is presented, that enables tracking of either the
quadrotor attitude, the load attitude or the load position. The
stability properties of the controllers are formally proved.
With numerical simulations, we have demonstrated that our
proposed geometric controller has much better performance
for tracking desired payload trajectories than traditional
geometric control where the offset is not considered,

APPENDIX

A. Derivation of the Dynamics for the Quadrotor with Load
Suspended with an offset from the CoM of quadrotor to the
suspension point

The geometric kinematic relation between quadrotor and
load are given by

xQ = xL−Lq−Rr,

vQ = vL−Lq̇−RΩ̂r.
Thus, the Lagrangian of system can be written as

L =
1
2

mQ||vL−Lq̇−RΩ̂r||2 + 1
2

Ω
T JΩ+

1
2

mL||vL||2

−mQge3 · (xL−Lq−Rr)−mLge3 · xL.

When xL has a variation δxL,
δLxL =δ ẋL · ((mQ +mL)vL−mQ(RΩ̂r+Lq̇))

− (mQ +mL)δxL ·ge3.
(43)

When R has a variation δR,
δLR =δΩ(JΩ−mQr̂RT (vL−Lq̇))

−Ω ·mQr̂(δR)T (vL−Lq̇)+mQδRr ·ge3.
Substituting (5) into the equation above, we have

δLR =η̇(JΩ−mQrRT (vL−Lq̇))−η · Ω̂JΩ

+η · (mQrΩ̂RT (vL−Lq̇)+MQr̂RT ge3).
(44)

Similarly, we have
δLq =ξ̇ · (mQL2q̂q̇−mQLq̂(vL−RΩ̂r))

+ξ ·mQL(q̂ge3− ˙̂q(vL−RΩ̂r)).
(45)

Then applying D’Alembert principle yields the following
three equations of motion:∫ t1

t0
δ ẋL · ((mQ +mL)vL−mQ(RΩ̂r+Lq̇))

− (mQ +mL)δxL ·ge3 +δxL · f Re3dt = 0,∫ t1

t0
η̇(JΩ−mQrRT (vL−Lq̇))−η · Ω̂JΩ+η · (mQrΩ̂RT

(vL−Lq̇)+mQr̂RT ge3)+η · (−r̂RT f Re3 +M)dt = 0,∫ t1

t0
ξ̇ · (mQL2q̂q̇−mQLq̂(vL−RΩ̂r))+ξ ·mQL

(q̂ge3− ˙̂q(vL−RΩ̂r))−ξ · (Lq̂ f Re3)dt = 0.

By integration by parts, the first equation can be simplified as:

(mQ +mL)(ẍL +ge3) = f Re3 +mQLq̈+mQ(RΩ̂
2 +R ˙̂

Ω)r, (46)

similarly for the second one, we have

JΩ̇+ Ω̂JΩ =−mQLr̂RT (q̈+
f

mQL
Re3)+mQr̂RT (ẍL +ge3)+M,

(47)
and for the third one, we also have

q̂2[Lq̈+
f

mQ
Re3− (ge3 + v̇L−RΩ̂

2r−R ˙̂
Ωr)] = 0, (48)

which indicates that

ω̇ =
1
L

q× [(ẍL +ge3−RΩ̂
2r−R ˙̂

Ωr)− f
mQ

Re3]. (49)

Moreover, we have
q̈ = ω̇×q− (q̇ · q̇)q. (50)

Substituting (50) to (46), (47), we could have the following rela-
tionship:

(mL +mQ)(ẍL +ge3) =−mQL(q̇ · q̇)q+ f Re3 +mQ(R
˙̂
Ω+RΩ̂

2)r

+mQq̂2[(RΩ̂
2r+RΩ̇r)+

f
m

Re3],

JΩ̇+ Ω̂JΩ =−mQLr̂RT (q · f
mQL

Re3− (q̇ · q̇))q−mQr̂RT q̂2

(RΩ̂
2r+R ˙̂

Ωr)+mQr̂RT (ẍL +ge3)+M.

Together with (49), the equations above can be simplified into a
more compact form, as shown in (7), (8), (9), (10).
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