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Abstract— Recent work on control Lyapunov functions and
control Barrier functions has enabled addressing stability of
nonlinear and underactuated hybrid systems while simultane-
ously enforcing input / state constraints and safety-critical con-
straints. However, under model uncertainty, these controllers
break down and violate constraints. This paper presents a novel
method of optimal robust control through quadratic programs
that can handle stability, input / state dependent constraints,
as well as safety-critical constraints, in the presence of high
level of model uncertainty. Under the assumption of bounded
uncertainty, the proposed controller strictly guarantees con-
straints without violating them. We evaluate our proposed
control design for achieving dynamic bipedal locomotion that
involves orbital stability of an underactuated nonlinear hybrid
system subject to (a) torque saturation constraints (input
constraints), (b) contact force constraints (state constraints),
and (c) precise footstep placements (safety-critical constraints).
We present numerical results on RABBIT, a five-link planar
bipedal robot, subject to a large unknown load on its torso.
Our proposed controller is able to demonstrate walking while
strictly enforcing the above constraints with an unknown load
of up to 15 Kg (47% of the robot mass.)

I. INTRODUCTION

Designing controllers for nonlinear systems for achieving
stability while simultaneously guaranteeing input, state, and
safety constraints is challenging. Trying to do this when
subject to high levels of model uncertainty is even harder.
The proposed controller in this paper offers a solution under
the assumption of bounded model uncertainty. We develop
a QP-based controller using control Lyapunov functions
for stability and control Barrier functions for safety and
strictly enforce constraints without violations even under the
presence of model uncertainty.

Using Control Lyapunov Functions (CLFs) for designing
feedback control and analyzing the stability of the closed
loop system for both linear and nonlinear systems is a
well established approach [6]. Recently, Control Lyapunov
Function (CLF) based controllers for nonlinear and hybrid
systems have been introduced, see [2], [3]. Inspired by these
approaches, expressing the CLF-based control via Quadratic
Programs was introduced in [7], which opens an effective
way for dealing with stability and additional input-based
constraints at the same time, wherein the control input is
solved through a QP pointwise in time.
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Furthermore, currently, a novel method of Control Bar-
rier Function incorporated with Control Lyapunov Function
based Quadratic Program (CBF-CLF-QPs) was introduced in
[1], that can handle state-dependent constraints effectively in
real-time. Preliminary experimental validations were carried
out on the problem of Adaptive Cruise Control in [11]. The
methodology has also been extended to safety constraints on
Riemmanian manifolds [18] and dynamic walking of bipedal
robots [14], [8].

These approaches offer formal guarantees on stability and
safety, however the question of robustness of this approach
remains. Robust control has been extensively studied and
there are well established methods, such as H∞-based and
linear quadratic Gaussian (LQG) based robust control [10]
for linear systems, and input-to-state stability (ISS) [16]
and sliding mode control (SMC) [5] methods for nonlinear
systems. Robust control of hybrid systems can be achieved
using the ISS technique, see [17].

The robustness of the CLF-QP has been recently addressed
in [13], however the problem of robustly enforcing con-
straints was not considered. Preliminary robustness analysis
of the CBF-based constraints was carried out recently in [19],
wherein formal bounds on the violation of the constraints due
to the model uncertainty were presented. However, for safety
constraints, it’s critical that constraints are enforced strictly
without any violations. In this paper, an Optimal Robust
Control via Quadratic Programs will offer a novel method
to simultaneously handle robust stability, robust input-based
constraints, and robust state-dependent constraints under
bounded model uncertainty.

In particular, our work builds off our recent results on
robust dynamic walking [13] (which offered robust stability
but did not handle constraints), and dynamic walking with
precise foot placements [14] (which guaranteed safety con-
straints but could not handle model uncertainty). The main
contributions of the paper with respect to prior work are:
• The introduction of a new technique of optimal ro-

bust control via quadratic programs that can simul-
taneously handle stability, input-based constraints and
state-dependent constraints under high level of model
uncertainty.

• Strict enforcement of input / state-based and safety
constraints without violations, even under the presence
of large model uncertainty.

• Application to dynamic bipedal walking subject to
torque constraints, contact force constraints, and precise
footstep placement constraints.

The rest of the paper is organized as follows. Section II re-



visits Control Barrier Functions and Control Lyapunov Func-
tions based Quadratic Programs (CBF-CLF-QPs). Section III
discusses the adverse effects of uncertainty in the dynamics
on the CBF-CLF-QP controllers. Section IV presents the
proposed optimal robust control using CBF-CLF-QP. Section
V presents numerical validation with application to dynamic
bipedal walking. Finally, Section VI provides concluding
remarks.

II. CONTROL LYAPUNOV FUNCTIONS AND CONTROL
BARRIER FUNCTION BASED QUADRATIC PROGRAMS

REVISITED

A. Model and Input-Output Linearizing Control
Consider a nonlinear control affine hybrid model

H :

{
ẋ = f(x) + g(x)u, x /∈ S
x+ = ∆(x−), x ∈ S

(1)

y = y(x),

where x ∈ Rn is the system state, u ∈ Rm is the control
input, S is the switching surface of the hybrid system, and
y ∈ Rm is a set of relative-degree two outputs. Thus,

ÿ = L2
fy(x) + LgLfy(x)u. (2)

If the decoupling matrix LgLfy(x) is invertible, then,

u(x, µ) = u∗(x) + (LgLfy(x))−1µ, (3)

with
u∗(x) = −(LgLfy(x))−1L2

fy(x), (4)

input-output linearizes the system. The dynamics of the
system (1) can then be described in terms of dynamics of
the transverse variables, η =

[
y(x) ẏ(x)

]T ∈ R2m, and
the coordinates z ∈ Z = {Rn | η(x) ≡ 0}. The input-output
linearized hybrid system then is,

HI/O :


η̇ = f̄(η) + ḡ(η)µ, (η, z) /∈ S
ż = p(η, z),

(η+, z+) = ∆(η−, z−), (η, z) ∈ S
(5)

y = y(η),

where z represents uncontrolled states [3], and

f̄(η) = Fη,
ḡ(η) = G,

with F =

[
O I
O O

]
, G =

[
O
I

]
. (6)

B. Control Lyapunov Function based Quadratic Programs
To enable directly controlling to the rate of convergence,

we use a rapidly exponentially stabilizing control Lyapunov
function (RES-CLF), introduced in [3]. RES-CLFs provide
guarantees of rapid exponential stability for the traverse
variables η. In particular, a function Vε(η) is a rapidly
exponentially stabilizing control Lyapunov function (RES-
CLF) for the system (1) if there exist positive constants
c1, c2, c3 > 0 such that for all 0 < ε < 1 and all states
(η, z),

c1‖η‖2 ≤ Vε(η) ≤ c2
ε2
‖η‖2, (7)

V̇ε(η, µ) +
c3
ε
Vε(η) ≤ 0. (8)

The RES-CLF will take the form

Vε(η) = ηT
[

1
εI 0
0 I

]
P

[
1
εI 0
0 I

]
η =: ηTPεη, (9)

with its time derivative computed as

V̇ε(η, µ) = Lf̄Vε(η) + LḡVε(η)µ, (10)

where

Lf̄Vε(η) = ηT (FTPε+PεF )η, LḡVε(η) = 2ηTPεG. (11)

The following (CLF-QP)-based controller, introduced in
[7], directly selects µ through an online quadratic program
to enforce (8), as well as additional constraints of the form,

Auc (x)u ≤ buc (x). (12)

CLF-QP:

µ∗ =argmin
µ,d

µTµ+ pd2 (13)

s.t. ψ0,ε(η) + ψ1,ε(η) µ ≤ d (CLF)
ψc0(x) + ψc1(x)µ ≤ 0 (Constraints)

where the CLF constraint is relaxed through d, and

ψ0,ε(η) = Lf̄Vε(η) +
c3
ε
Vε(η), ψ1,ε(η) = LḡVε(η),

ψc0(x) = −buc (x)−Auc (x)(LgLfy(x))−1L2
fy(x),

ψc1(x) = −Auc (x)(LgLfy(x))−1. (14)

Having revisited control Lyapunov function based
quadratic programs, we will next revisit control Barrier
functions.

C. Control Barrier Function

Control barrier functions were introduced in [1] to enable
designing controllers that enforce the forward invariance of
the safety set

C = {x ∈ Rn : h(x) ≥ 0} , (15)

where h : Rn → R is a continuously differentiable function.
A function B : C → R is a Control Barrier Function (CBF)
[1] if there exists class K function α1 and α2 such that, for
all x ∈ Int(C) = {x ∈ Rn : h(x) > 0},

1

α1(h(x))
≤ B(x) ≤ 1

α2(h(x))
, (16)

Ḃ(x, u) = LfB(x) + LgB(x)u ≤ γ

B(x)
. (17)

The existence of a Barrier function B(x) that satisfies the
CBF condition in (17), guarantees that if x(0) = x0 ∈ C,
i.e., h(x0) ≥ 0, then x = x(t) ∈ C,∀t, i.e., h(x(t)) ≥ 0,∀t.

We now can incorporate the above CBF condition into
CLF-QP controller as follow:



CBF-CLF-QP:

µ∗ =argmin
µ,d

µTµ+ pd2 (18)

s.t. ψ0,ε(η) + ψ1,ε(η) µ ≤ d (CLF)

ψb0(x) + ψb1(x) µ ≤ 0 (CBF)
ψc0(x) + ψc1(x)µ ≤ 0 (Constraints)

where,

ψb0(x) = LfB(x) + LgBu
∗(x)− γ

B(x)
,

ψb1(x) = LgB(x)LgL
−1
f y(x), (19)

with u∗ being defined in (4).

D. Modification of CBF for position based safety constraints

The CBF introduced above is for h(x) with relative degree
one. For application of CBF to robotic systems, we need
to consider position based safety constraints, or functions
of the form gb(x) ≥ 0 with relative degree two. The
modification of CBF with position based constraint was
simultaneously developed in [18], [8]. Here, we employ
the simpler construction from [18], and construct a relative
degree one barrier constraint as follows,

hCBF (x) := γbgb(x) + ġb(x) ≥ 0. (20)

Now, if we have an initial condition x0 satisfying gb(x0) ≥
0, and γb > 0, such that hCBF (x0) ≥ 0, then hCBF (x) ≥
0 =⇒ gb(x) ≥ 0. This is true since in the extreme case
when gb(x) = 0, hCBF (x) ≥ 0 =⇒ ġb(x) ≥ 0, which
ensures the constraint gb(x) ≥ 0 is not violated. In other
words, guaranteeing the barrier constraint (20) guarantees
gb(x) ≥ 0. Based on this modification, we now can apply
the CBF-CLF-QP based controller (18) with the barrier
constraint h(x) = hCBF (x).

III. ADVERSE EFFECTS OF UNCERTAINTY IN DYNAMICS
ON THE CBF-CLF-QP CONTROLLER

The optimization-based control approaches presented in
Section II have several interesting properties. Firstly, they
provide a guarantee on the exponential stability of the system
through Lyapunov functions, they are optimal with respect to
some cost function and result in the minimum control effort,
provide means of balancing conflicting requirements between
performance and input / state-based constraints, and finally
provide guarantees on enforcing safety-critical constraints
through Barrier functions.

However, a primary disadvantage of these controllers is
that they require an accurate dynamical model of the system.
Uncertainty in the model can cause poor quality of control
leading to tracking errors, and could potentially lead to
instability [13]. Moreover uncertainty in the model also
makes enforcing input and state constraints on the true
system hard. Furthermore, uncertainty could potentially lead
to violation of the safety-critical constraints [19]. In this

section, we will explore the effect of uncertainty on the CLF-
QP controller, input / state constraints, and safety constraints
enforced by the CBF-QP controller.

A. Effect of uncertainty on CLF-QP

We begin by considering uncertainty in the dynamics and
assume that the vector fields, f(x), g(x) of the true dynamics
(1), are unknown. Instead, we have to design our controller
based on the nominal vector fields f̃(x), g̃(x). Then, the pre-
control law (3) get’s reformulated as

u(x) = u∗(x) + (Lg̃Lf̃y(x))−1µ, (21)

with
u∗(x) := −(Lg̃Lf̃y(x))−1L2

f̃
y(x), (22)

where we have used the known nominal model rather than
the unknown true dynamics. Substituting u(x) from (21) into
(2), the input-output linearized system then becomes

ÿ = µ+ ∆1 + ∆2µ, (23)

where

∆1 = L2
fy(x)− LgLfy(x)(Lg̃Lf̃y(x))−1L2

f̃
y(x),

∆2 = LgLfy(x)(Lg̃Lf̃y(x))−1 − I. (24)

Remark 1: In the definitions of ∆1,∆2, note that when
there is no model uncertainty, i.e., f̃ = f, g̃ = g, then ∆1 =
∆2 = 0.

Using F and G from (6) and defining,

∆H :=

[
O
∆1

]
, ∆G :=

[
O
∆2

]
, (25)

the closed-loop system takes the form

η̇ = Fη + (G+ ∆G)µ+ ∆H. (26)

For ∆H 6= 0, the closed-loop system does not have an
equilibrium, and for ∆G 6= 0, the controller could potentially
destabilize the system. This raises the question of whether it’s
possible for controllers to account for this model uncertainty,
and if so, how do we design such a controller.

B. Effect of uncertainty on constraints

The input / state constraints in (12) depend on the model
explicitly, and can be rewritten explicitly as,

Auc (x, f, g)u ≤ buc (x, f, g). (27)

If a controller naively enforces these constraints using the
nominal model available to the controller, the controller will
enforce the constraint

Auc (x, f̃ , g̃)u ≤ buc (x, f̃ , g̃). (28)

On the true model, this is an invalid constraint and provides
no guarantees on enforcing the original constraint (27).

To clearly see how the true constraint would depend on
both models, we substitute u from (21) into (27) to obtain,

ψc0(x, f, g, f̃ , g̃) + ψc1(x, f, g, f̃ , g̃)µ ≤ 0. (29)



where,

ψc0(x, f, g, f̃ , g̃) :=− buc (x, f, g)−Auc (x, f, g)(Lg̃Lf̃y)−1L2
f̃
y,

ψc1(x, f, g, f̃ , g̃) :=Auc (x, f, g)(Lg̃Lf̃y)−1. (30)

The true constraint to be enforced now becomes (29). As can
be seen from (30), it’s challenging to enforce this constraint
without requiring knowledge of the true model in addition
to the nominal model.

Remark 2: It must be noted that certain constraints do not
depend on the model at all. In such cases, model uncertainty
doesnt affect the constraint. One example of such a constraint
is a pure input constraint, such as u(x) ≤ umax. Expressing
this constraint in the form of (27) results in Auc = I, buc =
umax, which clearly is not dependent on the model.

C. Effect of Uncertainty on CBF

Having seen the effect of uncertainty on constraints, we
will now see the effect of uncertainty on control Barrier
functions. Our formulation will proceed in a parallel manner
as presented for the constraints. We start with the time-
derivative of the Barrier function in (17) and note that the
constraint we need to enforce is

LfB(x) + LgB(x)u− γ

B(x)
≤ 0, (31)

where LfB(x), LgB(x) depends on the true model of the
system. As seen in the case of constraints, naively enforcing
this barrier constraint using the nominal model results in,

Lf̃B(x) + Lg̃B(x)u− γ

B(x)
≤ 0. (32)

Clearly this constraint is different from the previous one.
In fact, as analyzed in [19], this results in violation of the
safety-critical constraint established by the Barrier function.

To clearly see how the Barrier constraint depends on the
true and nominal models, we substitute u from (21) into (31)
to obtain,

ψb0(x, f, g, f̃ , g̃) + ψb1(x, f, g, f̃ , g̃)µ ≤ 0, (33)

where,

ψb1(x, f, g, f̃ , g̃) :=LfB(x)(Lg̃Lf̃y(x))−1,

ψb0(x, f, g, f̃ , g̃) :=LfB(x)− γ

B(x)

− LgB(x)(Lg̃Lf̃y(x))−1L2
f̃
y(x). (34)

The correct barrier constraint to be enforced becomes (33),
however, it’s challenging to enforce this barrier constraint
without knowledge of the true model in addition to the
nominal model of the system.

Remark 3: For the I/O linearized system, (5), F,G are
linear, time-invariant, and state-independent. For the CLF,
we can therefore evaluate the uncertainty based on the
difference with a static nominal model to obtain (26).
However, because the relation with the control input µ for
state / input based constraints (ψc0(x), ψc1(x)) in (29)) and
CBF constraint (ψb0(x), ψb1(x)) in (33)) are not linear and
invariant (those functions are dependent on the system state

x), the same approach to explore model uncertainty could
encounter difficulties. In order to address this issue, we will
introduce an alternative design termed “Virtual Input-Output
Linearization” that will help us to develop a novel controller
in the next section called Robust CBF-CLF-QP with Robust
Constraints.

IV. PROPOSED ROBUST CONTROL BASED QUADRATIC
PROGRAMS

A. Robust CLF-QP
Having discussed the effect of model uncertainty on the

control Lyapunov function based controllers in Section III,
we now present a robust controller, developed in [13], that
can guarantee tracking and stability in the presence of
bounded model uncertainty. As we will see, we will extend
this controller to robustify input / state constraints as well as
safety constraints encoded in CBFs.

For the following sections, we will abuse notation and
redefine f̄ , ḡ from (6) as

f̄ = Fη + ∆H, ḡ = G+ ∆G. (35)

We start with the closed-loop model with uncertainty as
developed in (26). With the CLF defined in (9), we then
have:

V̇ε = Lf̄Vε(η, z) + LḡVε(η, z)µ, (36)

where,

Lf̄Vε(η, z) = ηT (FTPε + PεF )η + 2ηTPε∆H,

LḡVε(η, z) = 2ηTPε(G+ ∆G). (37)

The RES condition (8) then becomes:

V̇ε(η,∆G,∆H,µ) +
c3
ε
Vε ≤ 0. (38)

Satisfying this inequality for all unknown ∆H,∆G defined
in (25) is generally not possible. To address this, we assume
the uncertainty is bounded as follows

‖∆H‖ ≤ ∆Hmax, ‖∆G‖ ≤ ∆Gmax, (39)

where the first norm is a vector norm, while the second norm
is a matrix norm.

The goal for the robust control design is to find µ that
satisfies the RES condition (8), evaluated through the given
bounds of uncertainty in (39). With the bounded uncertainty
assumption, the RES condition (8) will hold if the following
inequalities hold:

ψmax0,ε + ψp1,εµ ≤ 0,

ψmax0,ε + ψn1,εµ ≤ 0, (40)

where,

ψmax0,ε := max
(
ψn0,ε, ψ

p
0,ε

)
,

ψp0,ε := ηT (FTPε + PεF )η + 2ηTPε

[
0
1

]
∆Hmax +

c3
ε
Vε,

ψn0,ε := ηT (FTPε + PεF )η − 2ηTPε

[
0
1

]
∆Hmax +

c3
ε
Vε,

ψp1,ε := 2ηTPεG(1 + ∆Gmax),

ψn1,ε := 2ηTPεG(1−∆Gmax). (41)



This robust control problem can be solved through the
robust CLF-QP presented in [13]:

µ∗ =argmin
µ,d1,d2

µTµ+ p1d
2
1 + p2d

2
2 (42)

s.t. ψmax0,ε (η, z) + ψp1,ε(η, z) µ ≤ d1,

ψmax0,ε (η, z) + ψn1,ε(η, z) µ ≤ d2,

ψc0(x) + ψc1(x)µ ≤ 0. (Constraints)

B. Virtual Input-Ouput Linearization

Our development of the robust CLF-QP controller does not
enable us to directly enforce constraints in the presence of
model uncertainty, preventing us from robustifying input and
state constraints as well as safety constraints that are encoded
in the form of CBFs. On the other hand, robustifying the
CLF condition was easier. This is because in the presence
of model uncertainty, the I/O linearization (2) with the pre-
control (3) results in (23). This form of (23) was essential
for “robustifying” the CLF-QP condition (see Section IV-
A). So, the question then is how to extend this to CBF and
input / state constraints. As mentioned in Remark 3, since
the effect of uncertainty for CBF constraints with respect to
control input µ of the I/O linearization (3) is not static, it
causes difficulties in evaluating effects of uncertainty on the
CBF constraints.

One idea to address this is to get the CBF condition to
the same form of the CLF condition through another I/O
linearization for the CBF (17). This will robustify CBFs
and enable creating a unified robust CBF-CLF-QP. However
this idea is not directly feasible since LgB is a vector and
obviously not invertible. One approach that can potentially
work for this is to use MIMO non-square input-output
linearization [9].

Here, we solve this problem through optimization by
introducing a notion of Virtual Input-Output Linearization
(VIOL), wherein an invertible decoupling matrix is not
required. We will explain this method for CBF constraints
(a similar formulation holds for input and state constraints).
We begin with the CBF B(x) and define a virtual control
input µb such that (17) can be written as,

Ḃ(x, µ) = Ab(x)µ+ bb(x) =: µb(x, µ), (43)

where

Ab(x) := LgB(x)LgL
−1
f y(x),

bb(x) := LfB(x) + LgB(x)u∗(x), (44)

with u∗(x) as defined in (4). The CBF condition (17) can
then be written as

µb(x, u) ≤ γ

B(x)
, (45)

which can be rewritten as,

ψbv0 (x) + ψbv1 (x)µb ≤ 0, (46)

where

ψbv0 := − γ

B(x)
, ψbv1 := 1. (47)

The superscript "bv" stands for Barrier function based VIOL.
We can then reformulate the CBF-CLF-QP from (18) such

that the QP computes µb so as to simultaneously satisfy both
(43) and (46):

µ∗ =argmin
µ,µb,d

µTµ+ pd2 (48)

s.t. ψ0,ε(η) + ψ1,ε(η) µ ≤ d (CLF)

ψbv0 (x) + ψbv1 (x)µb ≤ 0 (CBF)
Ab(x)µ+ bb(x) = µb (VIOL)
ψc0(x) + ψc1(x)µ ≤ 0. (Constraints)

Here, the equality constraint of the Virtual Input-Ouput
Linearization (VIOL) is as presented in (43). The solutions
of two CBF-CLF-QP controllers (18) and (48) are exactly
the same. However, the VIOL in the CBF-CLF-QP opens up
a systematic way to design a robust CBF-CLF-QP controller
that will be introduced next. Note that this method also
enables creating “exponential” Barrier functions that enforce
safety constraints with arbitrary high relative-degree [15].

C. Robust CBF-CLF-QP with Robust Constraints

By using VIOL, the CBF now takes the similar form of
a linear system, Ḃ(x, µb) = µb, and therefore the effect
of uncertainty can be easily extended by using the same
approach as with the robust CLF-QP to obtain,

Ḃ(x,∆b
1,∆

b
2, µb) = µb + ∆b

1 + ∆b
2µb, (49)

where ∆b
1,∆

b
2 are functions of both the true and nominal

system models. The CBF condition (46) then becomes,

ψbv0 (x) + ψbv1 (x)(µb + ∆b
1 + ∆b

2µb) ≤ 0. (50)

Because we developed the CLF and CBF to have a similar
form for the I/O linearized system, we now have a systematic
way to develop the Robust CBF-CLF-QP.

We will again assume that our model uncertainty is
bounded, i.e.,

||∆b
1|| ≤ ∆b

1,max, ||∆b
2|| ≤ ∆b

2,max. (51)

Then, similarly as with the Robust CLF-QP, we now define:

ψmax0,bv := max(ψbv0,p, ψ
bv
0,n), (52)

ψp0,bv := ψbv0 + ψbv1 ∆b
1,max, (53)

ψn0,bv := ψbv0 − ψbv1 ∆b
1,max, (54)

ψp1,bv := ψbv1 (1 + ∆b
2,max), (55)

ψn1,bv := ψbv1 (1−∆b
2,max). (56)

The robust version of the CBF constraints will then become,

ψmax0,bv (x) + ψp1,bv(x)µb ≤ 0, (57)

ψmax0,bv (x) + ψn1,bv(x)µb ≤ 0 (58)

The same process can be applied to robustify input and
state constraints as well. We finally unify the the robust
CLF for stability under model uncertainty, robust CBF for
safety enforcement under model uncertainty, and the robust
constraints to obtain the following unified robust controller.



Robust CBF-CLF-QP with Robust Constraints:

argmin
µ,d1,d2

µTµ+ p1d
2
1 + p2d

2
2 (59)

s.t. ψmax0,ε (η) + ψp1,ε(η) µ ≤ d1, (Robust CLF)

ψmax0,ε (η) + ψn1,ε(η) µ ≤ d2,

ψmax0,bv (x) + ψp1,bv(x) µb ≤ 0, (Robust CBF)

ψmax0,bv (x) + ψn1,bv(x) µb ≤ 0,

(Robust Constraints)
ψmax0,cv (x) + ψp1,cv(x) µc ≤ 0,

ψmax0,cv (x) + ψn1,cv(x) µc ≤ 0,

Ab(x)µ+ bb(x) = µb, (VIOL)
Ac(x)µ+ bc(x) = µc.

Remark 4: Note that ψmax0,ε , ψmax0,bv , ψ
max
0,cv are defined as

the maximum of two continuous functions, and are thus con-
tinous. This then results in continuously varying constraints
that are enforced point-wise in time, resulting in Lipschitz
continuous control inputs [12].

V. APPLICATION: DYNAMIC BIPEDAL WALKING WHILE
CARRYING UNKNOWN LOAD, SUBJECT TO TORQUE

CONSTRAINTS, CONTACT FORCE CONSTRAINTS, AND
FOOT-STEP LOCATION CONSTRAINTS

To demonstrate the effectiveness of the proposed robust
CBF-CLF-QP controller, we will conduct numerical simula-
tions on the model of RABBIT, [4], a planar five-link bipedal
robot with a torso and two legs with revolute knees that
terminate in point feet. RABBIT weighs 32 kg, has four
brushless DC actuators with harmonic drives to control the
hip and knee angles, and is connected to a rotating boom
which constrains the robot to walk in a circle, approxi-
mating planar motion in the sagittal plane. The dynamical
model of RABBIT is nonlinear and hybrid, comprising of a
continuous-time underactuated stance phase and a discrete-
time impact map.

We validate the performance of our proposed robust con-
troller through dynamic bipedal walking on RABBIT, subject
to model uncertainty while simultaneously requiring enforce-
ment of input constraints, state constraints, and safety-critical
constraints. Model uncertainty appears in the form of an
unknown heavy load added to the torso of RABBIT.

In bipedal robotic walking, input constraints arise as
constraints on motor torques and state constraints could arise
as ground contact force constraints, which appear both as a
unilateral constraint on the vertical component of the force at
the stance foot and as a friction cone constraint. If F (x) and
N(x) are state-dependent friction force and vertical contact

Fig. 1: Dynamic bipedal walking while carrying unknown
load, subject to torque saturation constraints (input con-
straints), contact force constraints (state constraints), and
foot-step location constraints (safety constraints). Two simu-
lations of the Robust CBF-CLF-QP with Robust Constraints
controller for walking over 10 discrete foot holds is shown,
subject to model uncertainty of 15 Kg (47 %). Simulation
video: http://youtu.be/tT0xE1XlyDI
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Fig. 2: Dynamic walking of bipedal robot while carrying
unknown load of 15 Kg (47 %). The CBF constraints,
h1(x) ≥ 0 and h2(x) ≥ 0 defined in [14], guarantee precise
foot-step locations. The figure depicts data for 10 steps of
walking. As can be clearly seen, the constraints are strictly
enforced despite the large model uncertainty.

force between the stance foot and the ground, then, in order
to avoid slipping during walking, we need to guarantee:

N(x) ≥ δN > 0, (60)∣∣∣∣F (x)

N(x)

∣∣∣∣ ≤ kf , (61)

where δN is a positive threshold for the vertical contact force,
and kf is the friction coefficient.

Note that, contact force constraints are very important for
the problem of robotics walking. Any violation of these con-
straints will result in the leg slipping and the robot potentially
falling. Although a nominal walking gait is usually designed
to respect these constraints, however, we cannot guarantee
these constraints under transients or under model uncertainty.

We also consider safety constraints in the form of precise
foot placement constraints that need to be critically enforced
to safely walk over a terrain of discrete footholds. In prior
work [14], these foot placement constraints were formulated
as safety constraints through CBFs and enforced assuming
perfect knowledge of the system model. We consider these
CBF constraints here to demonstrate walking over discrete
footholds while subject to model uncertainty.

We consider the above constraints - torque constraints
of 150 Nm as per the motor specifications, ground contact

http://youtu.be/tT0xE1XlyDI
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(a) Vertical Contact Force: N(x) > δN , (δN = 0.1mg).

(b) Friction Constraint: |F/N | ≤ kf , (kf = 0.8)

Fig. 3: Dynamic walking of bipedal robot while carrying
unknown load of 15 Kg (47 %). (a) Vertical contact force
constraint and (b) friction constraint are shown for 10 steps
walking. As is evident, both constraints are strictly enforced
despite the large model uncertainty.

constraints with δN = 0.1mg, kf = 0.8, and precise footstep
constraints. We ran 100 random simulations, where for
each simulation, the unknown load was choosen randomly
between 5-15 Kg, and 10 discrete footholds were randomly
generated with step lengths between 0.35-0.55 m (the nom-
inal walking gait has a step length of 0.45 m). A run was
marked as a failure if either (a) foot placement constraints
were violated, or (b) contact force constraints were violated
during the simulation. The following two controllers were
evaluated on each run: (A) CBF-CLF-QP with Constraints;
(B) Robust CBF-CLF-QP with Robust Constraints.

The same set of random parameters was tested on the two
controllers. While the nominal CBF-CLF-QP succeeded in
only 2% of the tests, the Robust CBF-CLF-QP controller was
successful for 98% tests. This result not only strengthens the
effectiveness of the proposed controller, but it also empha-
sizes the importance of considering robust control especially
for safety constraints, where even a small model uncertainty
can cause violation of such safety critical constraints. Figures
1, 2, 3 illustrate one of the runs where the maximum load
of 15 Kg (47% of robot mass) was considered. Stick figure
plots, CBF constraints, vertical contact force, and friction
constraint plots are shown. Note that, the simulations were
artificially limited to 10 steps, to enable fast execution of
100 runs for each controller. Simulations for larger number
of steps were also successful as well, but are not presented
here due to space constraints.

VI. CONCLUSION

We have presented a novel method of optimal robust con-
trol through quadratic programs for nonlinear hybrid systems

to handle stability while enforcing input constraints, state
dependent constraints, as well as safety-critical constraints,
all in the presence of high level of model uncertainty. The
controller was evaluated on a model of RABBIT with a large
model uncertainty, in the form of an unknown load on the
torso of up to 15 Kg (47% of the robot mass), to achieve
dynamic bipedal walking while simultaneously subject to
enforcing strict torque saturation, contact force, and precise
footstep placements constraints.
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