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Abstract— This paper presents an approach to apply L1

adaptive control for output regulation in the presence of
nonlinear uncertainty in underactuated hybrid systems with ap-
plication to bipedal walking. The reference model is generated
by control Lyapunov function based quadratic program (CLF-
QP) controller and is nonlinear. We evaluate our proposed
control design on a model of RABBIT, a five-link planar bipedal
robot. The result is the exponential stability of the robot with an
unchanged rate of convergence under different levels of model
uncertainty.

I. INTRODUCTION

In recent years, the introduction of L1 adaptive control
technique has enabled decoupling of adaptation and ro-
bustness in adaptive control techniques. In particular, by
applying a low-pass filter as part of the adaptation laws help
the L1 adaptive controller to guarantee not only stability
[3] but also transient performance [5]. L1 adaptive control
appears to have great potential for application in aerospace
systems, illustrated in [6], [10]. However, to the best of
our knowledge, using L1 adaptive control to deal with
uncertainty for control of bipedal robots, systems that are
hybrid, high-dimensional, nonlinear and undeactuated, has
not been considered. Furthermore, while standard L1 adap-
tive control typically solves the problem of tracking a given
linear reference system, in this paper, we present an adaptive
control for nonlinear uncertainty with a nonlinear reference
model that arises as the closed-loop system on application of
a rapidly exponential stabilizing control Lyapunov function
(RES-CLF) [1]. For control of bipedal robots, guaranteeing
a suitable rate of convergence is very important for the
stability of its hybrid dynamics. That is the reason why we
need to drive the robot to follow a fast reference dynamics.
The presence of a low-pass filter in the L1 adaptive control
allows us to prevent high-frequency control signals that are
typical and frequently seen in adaptive control problems.
This will be critical to keep motor torques less noisy, and will
contribute to ensuring the validity of the unilateral ground
contact constraints, as well as retaining the energy efficiency
of walking control of bipedal robot.

There have been several approaches for control of bipedal
robots. The method of Hybrid Zero Dynamics (HZD), [13],
[14], has been very successful in dealing with the hybrid and
underactuated dynamics of legged locomotion. This method
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is characterized by choosing a set of output functions, which
when driven to zero, creates a lower-dimensional time-
invariant zero dynamics manifold. Stable periodic orbits de-
signed on this lower-dimensional system are then also stable
orbits for the full system under an appropriate controller.
Until recently, experimental implementations of the HZD
method relied on input-output linearization with PD control
to drive the system to the zero dynamics manifold, for
instance see dynamic walking [11] and running [12] on MA-
BEL. However, recent work on control Lyapunov function
(CLF)-based controllers has enabled effective implementa-
tions of stable walking, both in simulations and experiments
[1]. This flexible control design, based on Lyapunov theory,
has also enabled computing the control based on online
quadratic programs (QPs), facilitating incorporating addi-
tional constraints into the control computation. For instance,
control Lyapunov function based quadratic programs (CLF-
QPs) with constraints on torque saturation were demonstrated
experimentally in [7], and CLF-QPs were used to design a
unified controller for performing locomotion and manipula-
tion tasks in [2]. Sufficient conditions for Lipschitz continuity
of the control produced by solving the CLF-QP problem are
reported in [9].

However, all these controllers assume a perfect knowledge
of the dynamic model. Furthermore, there is tremendous
interest in employing legged and humanoid robots for dan-
gerous missions in disaster and rescue scenarios. This is
evidenced by the ongoing grand challenge in robotics, The
DARPA Robotics Challenge (DRC). Such time and safety
critical missions require the robot to operate swiftly and
stably while dealing with high levels of uncertainty and large
external disturbances. The limitation of current research, as
well as the demand of practical requirement, motivates our
research on adaptive control for hybrid systems in general
and bipedal robots in particular.

The rest of the paper is organized as follows. Section II
revisits rapidly exponentially stabilizing control Lyapunov
functions (RES-CLFs), and control Lyapunov function-based
quadratic programs (CLF-QPs). Section III discusses the
adverse effects of uncertainty in the dynamics on the CLF-
QP controllers. Section IV presents the proposed L1 adaptive
controller with CLF-QP. Section V develops the proposed
L1 adaptive controller with CLF-QP to cope with additional
constraint of torque saturation. Section VI presents simula-
tions of the controllers on a perturbed model of RABBIT, a
five-link planar bipedal robot. Finally, Section VII provides
concluding remarks.



II. RAPIDLY EXPONENTIALLY STABILIZING CONTROL
LYAPUNOV FUNCTIONS AND QUADRATIC PROGRAMS

REVISITED

A. Hybrid Model

Bipedal walking is characterized by single-support
continuous-time dynamics and double-support discrete-time
impact dynamics, and is represented by a hybrid model,

H =

{
ẋ = f(x) + g(x)u, x− /∈ S,
x+ = ∆(x−), x− ∈ S,

(1)

where x ∈ Rn and u ∈ Rm are the robot state and control
inputs respectively, x− and x+ represent the state before and
after impact, S represents the switching surface when the
swing leg contacts the ground, and ∆ represents the discrete-
time impact map. We also define output functions y(x) ∈
Rm, to represent the walking gait, such that the method of
Hybrid Zero Dynamics (HZD) drives these output functions
(and their first derivatives) to zero, thereby imposing “virtual
constraints” such that the system evolves on the lower-
dimensional zero dynamics manifold, given by

Z = {x ∈ Rn | y(x) = 0, Lfy(x) = 0}. (2)

B. Input-Output Linearization

If y(x) has vector relative degree 2, then the second
derivative takes the form

ÿ = L2
fy(x) + LgLfy(x) u. (3)

Suppose, (η, z) = Φ(x) is a state transformation, where the
transverse variables η = [y, ẏ]T , and z ∈ Z. Then, using
the input-output linearizing pre-control

u(x) = (LgLfy(x))−1
(
−L2

fy(x) + µ
)
, (4)

we obtain the closed-loop dynamics in terms of (η, z), as

η̇ = Fη +Gµ
ż = p(η, z)

, F =

[
0 I
0 0

]
, G =

[
0
I

]
. (5)

We can then apply the PD control

µ =
[
− 1
ε2KP − 1

εKD

]
η, (6)

which will exponentially stablilize the the system if

A =

[
0 I

− 1
ε2KP − 1

εKD

]
. (7)

is Hurwitz. The ε controls the rate of convergence and
is needed to counteract the expansive impact map ∆ to
guarantee exponential stability of the hybrid system.

C. CLF-based Control

We present a controller introduced in [1], that provides
guarantees of rapid exponential stability for the traverse
variables η. In particular, a function Vε(η) is a rapidly
exponentially stabilizing control Lyapunov function (RES-
CLF) for the system (5) if there exist positive constants

c1, c2, c3 > 0 such that for all 0 < ε < 1 and all states
(η, z) it holds that

c1‖η‖2 ≤ Vε(η) ≤ c2
ε2
‖η‖2, (8)

V̇ε(η, µ) +
c3
ε
Vε(η) ≤ 0. (9)

We chose a CLF candidate as follows

Vε(η) = ηT
[
1
εI 0
0 I

]
P

[
1
εI 0
0 I

]
η =: ηTPεη, (10)

where P is the solution of the Lyapunov equation ATP +
PA = −Q (where A is defined in (7) and Q is any
symmetric positive-definite matrix). We then have,

V̇ε(η, µ) +
c3
ε
Vε(η) =: ψ0,ε(η, z) + ψ1,ε(η, z)µε, (11)

where,

ψ0,ε(η, z) = ηT (FTPε + PεF )η +
c3
ε
Vε(η, z)

ψ1,ε(η, z) = 2ηTPεG. (12)

We can then construct the control µ that satisfies the RES
condition (9) as follows: We define the set, Kε(η, z) = {µε ∈
Rm : ψ0,ε(η, z) + ψ1,ε(η, z)µε ≤ 0}. Then, it can be show
that for any Lipschitz continuous feedback control law µ ∈
Kε(η, z) (min-norm or Sontag control [1]), it holds that

‖η(t)‖ ≤ 1

ε

√
c2
c1
e−

c3
2ε t‖η(0)‖, (13)

i.e. the rate of exponential convergence to the zero dynamics
manifold can be directly controlled with the constant ε
through c3

ε .

D. CLF-based Quadratic Programs

CLF-based quadratic programs (QPs) were introduced in
[7], where it was identified that a controller µ ∈ Kε(η, z)
can be directly selected through an online QP to satisfy (9):

CLF-QP:

argmin
µ

µTµ

s.t. ψ0,ε(η, z) + ψ1,ε(η, z) µ ≤ 0.
(14)

Furthermore, the QP formulation also enables incorporating
additional constraints, such as strict torque saturation con-
straints.

Having presented recent developments in control Lya-
punov functions and control Lyapunov functions based
quadratic programs for hybrid dynamical systems, we next
consider the effect of uncertainty in the dynamics on these
controllers.



III. ADVERSE EFFECTS OF UNCERTAINTY IN DYNAMICS
ON THE CLF-QP CONTROLLER

The CLF-based approaches presented in Section II have
several interesting properties. Firstly, they provide a guaran-
tee on the exponential stability of the hybrid system, they
are optimal with respect to some cost function, result in the
minimum control effort, and provide means of balancing
conflicting requirements between performance and state-
based constraints. These controllers were even successfully
implemented on MABEL, see [1], [7]. However, a primary
disadvantage of these controllers is that they require an
accurate dynamical model of the system. Specifically, as we
will see, even for a simpler bipedal model such as RABBIT
(compared to MABEL), uncertainty in mass and inertia
properties of the model can cause bad control quality leading
to tracking errors, and could potentially lead to walking that
is unstable.

If we consider uncertainty in the dynamics and assume
that the functions, f(x), g(x) of the real dynamics (1), are
unknown, we then have to design our controller based on
nominal functions f̃(x), g̃(x). Thus, the pre-control law (4)
is reformulated as

u(x) = (Lg̃Lf̃y(x))−1
(
−L2

f̃
y(x) + µ

)
. (15)

Substituting u(x) from (15) into (3), the second derivative
of the output, y(x), then becomes

ÿ = µ+ θ, (16)

where,

θ = ∆1 + ∆2µ

∆1 = L2
fy(x)− LgLfy(x)(Lg̃Lf̃y(x))−1L2

f̃
y(x),

∆2 = LgLfy(x)(Lg̃Lf̃y(x))−1 − I. (17)

The closed-loop system now takes the form

η̇ = Fη +G(µ+ θ). (18)

where F and G are defined in (5).
Clearly for θ 6= 0, the closed-loop system does not have

an equilibrium and therefore the PD control (6) does not
stabilize the system dynamics. This raises the question of
whether it’s possible for controllers to account for this model
uncertainty, and if so, how do we design such a controller.
Note that the uncertainty θ is a nonlinear function of (x, µ),
and therefore a nonlinear function of η and time (since
(η, z) = Φ(x), µ = µ(η), z = z(t)).

IV. L1 ADAPTIVE CONTROL WITH CONTROL LYAPUNOV
FUNCTION BASED QUADRATIC PROGRAM

From the Section III, we have the system with uncertainty
described by (18) where the nonlinear uncertainty θ =
θ(η, t). As a result, for every time t, we can always find
out α(t) and β(t) such that [4]:

θ(η, t) = α(t)||η||+ β(t) (19)

The principle of our method is to design a combined
controller µ = µ1 + µ2, where µ1 is to control the model to

follow the desired reference model and µ2 is to compensate
the nonlinear uncertainty θ. The reference model could be
linear when we apply conventional PD control (6) for µ1.

In the perfect case of without uncertainty, we will have
the following desired linear model with PD control

η̇ = Amη (20)

where Am = A in (7), which is a standard linear reference
model for L1 adaptive control.

In this paper, we present a method to consider a reference
model for L1 adaptive control that arises from a rapidly expo-
nentially stabilizing CLF-based controller. In particular, we
consider the reference model that arises when µ1 is chosen
to be the solution of the QP (14). This reference model is
nonlinear and has no closed-form analytical expression.

The state predictor can then be expressed as follows,

˙̂η = F η̂ +Gµ̂1 +G(µ2 + θ̂), (21)

where,

θ̂ = α̂||η||+ β̂, (22)

and µ̂1 is computed as the solution of the following QP:

CLF-QP for the state predictor:

argmin
µ̂1,d1

µ̂T1 µ̂1

s.t. ψ0,ε(η̂, z) + ψ1,ε(η̂, z) µ̂1 ≤ 0.
(23)

In order to compensate the estimated uncertainty θ̂, we
can just simply choose µ2 = −θ̂ to obtain

˙̂η = F η̂ +Gµ̂1 (24)

which satisfies the rapid exponential stability [1] since µ̂1 is
designed through the CLF-QP in (23). However, θ̂ typically
has high-frequency content due to fast estimation. For the
reliability of the control scheme and in particular to not
violate the unilateral ground force constraints for bipedal
walking, it is very important to not have high-frequency
content in the control signals. Thus, we apply the L1 adaptive
control scheme to decouple estimation and adaptation [5].
Therefore, we will have

µ2 = −C(s)θ̂ (25)

where C(s) is a low-pass filter with magnitude being 1.
Define the difference between the real model and the

reference model η̃ = η̂ − η, we then have,

˙̃η = F η̃ +Gµ̃1 +G(α̃||η||+ β̃), (26)

where

µ̃1 = µ̂1 − µ1, α̃ = α̂− α, β̃ = β̂ − β. (27)



As a result, we will estimate θ indirectly through α and
β, or the values of α̂ and β̂ computed by the following
adaptation laws based on the projection operators [8],

˙̂α = ΓProj(α̂, yα),

˙̂
β = ΓProj(β̂, yβ). (28)

where Γ is a symmetric positive define matrix.
We now have the control diagram of the L1 adaptive

control with CLF-QP described in Fig. 1.
In order to find out a suitable function yα and yβ for

the adaptation laws in (28), we will consider the following
control Lyapunov candidate function

Ṽ = η̃TPεη̃ + α̃TΓ−1α̃+ β̃TΓ−1β̃ (29)

Because η̃ = η̂ − η satisfies the RES condition imposed
by the two CLF-QP (14) and (23), it implies that

(F η̃ +Gµ̃1)TPεη̃ + η̃TPε(F η̃ +Gµ̃1) ≤ −c3
ε
η̃TPεη̃

(30)

Furthermore, with the property of projection operator [8], we
have:

(α̂− α)T (Proj(α̂, yα)− yα) ≤ 0,

(β̂ − β)T (Proj(β̂, yβ)− yβ) ≤ 0. (31)

So, if we choose the projection functions yα and yβ as,

yα = −GPεη̃||η||,
yβ = −GPεη̃, (32)

then from (30), (31), we will have

˙̃V +
c3
ε
Ṽ ≤ c3

ε
α̃TΓ−1α̃+

c3
ε
β̃TΓ−1β̃

−α̃TΓ−1α̇− α̇TΓ−1α̃

−β̃TΓ−1β̇ − β̇TΓ−1β̃. (33)

We assume that the uncertainties α, β and their time
derivatives are bounded. Furthermore, the projection oper-
ators (28) will also keep α̃ and β̃ bounded (see [4] for
a detailed proof about these properties.) We define these
bounds as follows:

||α̃|| ≤α̃b, ||β̃|| ≤ β̃b,
||α̇|| ≤α̇b, ||β̇|| ≤ β̇b. (34)

Combining this with (33), we have,

˙̃V +
c3
ε
Ṽ ≤ c3

ε
δṼ , (35)

where

δṼ = 2||Γ||−1(α̃2
b + β̃2

b +
ε

c3
α̃bα̇b +

ε

c3
β̃bβ̇b). (36)

Thus, if Ṽ ≥ δṼ then ˙̃V ≤ 0. As a result, we always
have Ṽ ≤ δṼ . In other words, by choosing the adaptation
gain Γ sufficiently large, we can limit the Control Lyapunov
Function (29) in an arbitrarily small neighborhood δṼ of the
origin. Therefore the tracking errors between the dynamics

Fig. 1: Control diagram illustrating L1 adaptive control with
a CLF-QP based closed-loop reference model.

model (18) and the reference model (21), η̃, and the error
between the real and estimated uncertainty, α̃, β̃ are bounded
as follows:

||η̃|| ≤

√
δṼ
||Pε||

, ||α̃|| ≤
√
||Γ||δṼ , ||β̃|| ≤

√
||Γ||δṼ . (37)

Another interesting property of this controller is that δṼ can
also be decreased by choosing a sufficiently small ε < ε̄.

V. L1 ADAPTIVE CONTROL WITH CONTROL LYAPUNOV
FUNCTION BASED QUADRATIC PROGRAM AND TORQUE

SATURATION

CLF-QP based controllers can be extended to incorpo-
rate other constraints, such as strict torque constraints as
carried out in [7]. This can also be combined with L1

adaptive control. The controller design is almost equiva-
lent to the L1 adaptive control with CLF-QP presented
in Section IV. We retain µ2 as in (25) and adaptation
laws for α̂, β̂ as in (28), while we redesign µ1 and µ̂1

based on the CLF-QP with torque saturation [7], as below:

CLF-QP with torque saturation for the dynamics model:

argmin
µ1,d1

µT1 µ1 + pλ2

s.t. ψ0,ε(η, z) + ψ1,ε(η, z) µ1 ≤ λ,
(LgLfy(q, q̇))−1 µ1 ≥ (umin − u∗),

(LgLfy(q, q̇))−1 µ1 ≤ (umax − u∗).

(38)

CLF-QP with torque saturation for the state predictor:

argmin
µ̂1,d1

µ̂T1 µ̂1 + pλ2

s.t. ψ0,ε(η̂, z) + ψ1,ε(η̂, z) µ̂1 ≤ λ,
(LgLfy(q, q̇))−1 µ̂1 ≥ (umin − u∗),

(LgLfy(q, q̇))−1 µ̂1 ≤ (umax − u∗).

(39)

Here, λ is a relaxation of the stability criterion to respect
potentially conflicting torque saturation constraints, and p the
penalty for relaxation. Note, that the proposed controller only
respects saturation for the CLF-QP controller component
(µ1), and not the L1 adaptive controller component (µ2).



(a) RABBIT

q1
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q3

q4

q5

(b) Coordinate system

Fig. 2: (a) RABBIT, a planar five-link bipedal robot with
nonlinear, hybrid and underactuated dynamics. (b) The the
associated generalized coordinate system used, where q1, q2
are the relative stance and swing leg femur angles referenced
to the torso, q3, q4 are the relative stance and swing leg knee
angles, and q5 is the absolute torso angle in the world frame.

VI. SIMULATION

Having developed the L1 adaptive control with CLF-QP,
both with and without torque saturation (see Sections IV,
V), we now demonstrate the performance of these controllers
through numerical simulations and offer comparisions with
the standard CLF-QP controller in [1], [7]. We will conduct
simulations with the following controllers:

Controller A : CLF-QP
Controller B : L1-CLF-QP (40)
Controller C : L1-CLF-QP with torque saturation

For Controller ’C’, we choose the following torque sat-
urations: umax = ub;umin = −ub with ub =[
65 65 65 65

]T
.

We perform simulations using a model of RABBIT,
wherein, the stance phase is parametrized by a suitable set
of coordinates as illustrated in Fig. 2. Here, q1 and q2 are
the thigh angles (referenced to the torso), q3 and q4 are
the knee angles, and q5 is the absolute angle of the torso.
Because RABBIT has point feet, the stance phase dynamics
are underactuated with the system possessing 4 actuated
degrees-of-freedom (DOF) and 1 underactuated DOF.

For the purpose of evaluating the L1 adaptive control with
CLF-QP controller, we will consider a periodic walking gait
and an associated controller that is developed for a nominal
model of RABBIT.The simulation is then carried out on
a perturbed model of RABBIT, where the perturbation is
introduced by scaling all mass and inertia parameters of each
link by a fixed constant scale factor. The perturbed model is
unknown to the controller and will serve as an uncertainty
injected into the model. We will illustrate three separate cases
of scaling the mass and inertia:

Case I : model scale = 1
Case II : model scale = 0.7
Case III : model scale = 1.5

(41)
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Fig. 3: Control Lyapunov function for the three controllers
A-C indicated in (40), for the cases I-III (41) of model
perturbations. The simulation is for three walking steps.

As we can see from the Fig. 3, in Case I, when we set the
model scale equal to 1, i.e., no uncertainty, the performance
of the three controllers in (40) are nearly the same. However,
from Fig. 4, we can notice that the control inputs of the
controller C are limited by the torque saturation ub, resulting
in a bit slower rate of convergence of tracking errors.

When we present a high level of uncertainty, Cases II-
III with model scale = 0.7 and 1.5, Controller ’A’ cannot
guarantee a zero tracking error. However, Controllers ’B’ and
’C’, not only drive the output y to converge to zero but also
keep the rate of convergence unchanged through the three
cases of model uncertainty. This property is important for
bipedal walking since a sufficiently fast rate of convergence
is required to guarantee stability of the hybrid system [1].
The rates of convergence of controller ’C’ in the Cases II-III
are a bit slower than those of the controller ’B’ due to the
additional constraint of torque saturation.

We note that, the performance of the two L1 adaptive
controllers (’B’ and ’C’), are much better than the standard
CLF-QP controller (’A’). Further, although the control sig-
nals of the three controller are similar, as is evident from
close observation of Fig. 4, Controller ’C’, the torque is
saturated. Finally, Fig. 5 illustrates the phase plot of the
torso angle for the three controllers with a model uncertainty
corresponding to case III.

VII. CONCLUSION

In summary, we have presented a novel control methodol-
ogy to apply L1 adaptive control for dynamic bipedal walk-
ing in the presence of uncertainty. The controller explicitly
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(a) Case I: model scale = 1
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(b) Case II: model scale = 0.7
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(c) Case III: model scale = 1.5

Fig. 4: Control inputs (motor torques for stance and swing legs) based on the simulation of three cases of perturbed model
of RABBIT (41) with three controllers as described in (40). Simulation of three walking steps are shown.
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Fig. 5: Phase portrait of the torso angle for walking simu-
lation for 20 steps for model perturbation Case III (model
scale = 1.5) with three different controllers (A-C). Note that
the uncertainty causes a change in the periodic orbit. This is
as expected, as the controller only tracks the outputs (even
in the presence of uncertainty), and the unactuated dynamics
on Z evolve passively.

considers the nonlinear, underactuated and hybrid dynamics
that are characteristic of bipedal robots. The proposed control
strategy uses a control Lyapunov function based controller
to create a closed-loop nonlinear reference model for the
L1 adaptive controller for working in the presence of uncer-
tainty. Numerical simulations on RABBIT demonstrate the
validity of the proposed controller.
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