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Abstract—Reinforcement learning and policy search methods
can in principle solve a wide range of control tasks automatically.
However, practical robotic applications of policy search typically
require a carefully designed policy representation that is specific
to each task [2]. For high dimensional robotics tasks where
value function estimation is impractical, policy gradient methods
usually achieve the best results [6]. However, these methods
assume that the policy return is a smooth function of the
parameters. Since locomotion is inherently a hybrid task that
combines both smooth and discontinuous dynamics [3], such
methods are difficult to apply to locomotion without a carefully
engineered policy parameterization that subsumes the nonsmooth
aspects of the problem.

We present a policy optimization method that can effectively
handle discontinuous dynamics and learn locomotion controllers
represented by general-purpose function approximators such as
neural networks. Our method combines policy iteration with
a trust region method that limits the change in the policy at
each iteration. The algorithm can be shown to monotonically
improve the policy and converge to a local optimum without
assumptions about the smoothness of the objective landscape.
Preliminary empirical results suggest that it can learn effective
planar swimming, hopping, and walking gaits in simulation. Since
the algorithm produces a neural network that directly maps
system state to joint torques, it is well suited for real-time control
and does not require task-specific policy classes or features.

I. POLICY ITERATION FOR LOCOMOTION

General-purpose controller optimization has previously been
addressed with direct policy search methods [2] and ap-
proximate dynamic programming techniques, such as policy
iteration [1]. In direct policy search, samples from the current
controller are used to estimate the gradient of the return
with respect to the controller parameters. While such methods
have achieved impressive results on real robotic systems,
they assume that the return is a smooth function of the
parameters, and typically require a compact, low-dimensional
policy representation [2]. Approximate dynamic programming
does not assume smoothness, but such methods are difficult
to apply to high-dimensional, continuous dynamical systems.

A common limitation of approximate dynamic program-
ming methods is the need to maintain an estimate of the value
function. This is problematic, because the value function is
often nonsmooth and has a large dynamic range, requiring a
complex function approximator. Furthermore, a value function
that has low Bellman error is not necessarily accurate [5], and

Fig. 1. Neural network controllers for hopping and bipedal walking (in 2D)
learned using our method. Simulated using MuJoCo [8].

a good RMS fit to the value function does not necessarily
result in a good controller [9].

We avoid fitting a function approximator to the value
function by using simulation rollouts to estimate the value of a
few randomly chosen actions at each visited state. We then fit a
parameteric representation of the policy to these value function
estimates. For many high-dimensional problems, representing
a policy is much easier than representing the value function.

Another critical component of our approach is an explicit
bound on the change in the policy at each iteration, to ensure
that the new policy does not visit drastically different states
where we did not collect samples. This is similar to several
recent policy search methods [6, 7]. The difference between
these methods and ours is that the policy is fitted to samples of
the value function collected for a number of different actions
at each visited state, which effectively mitigates many of the
problems caused by discontinuous objective landscapes, since
the additional action samples serve to “preview” the outcome
of taking a different action in each state.

A brief summary of our method is as follows. We use
a stochastic policy, which maps each state to a probability
distribution over the action space. At each iteration, our
method samples states from the current policy by performing
rollouts. At each state along these primary rollouts, we sample
additional actions and perform branch rollouts to estimate the
action’s value. These branch rollouts allow us to form a loss
function which locally approximates the expected returns of
the policy. This loss function is then minimized subject to a
constraint that the change in the action distribution compared
to the previous policy is small. It can be shown that for a
sufficiently small step, the performance of the policy improves



with high probability, using an argument similar to the one
presented by Kakade and Langford [4], without assumptions
about the smoothness of the objective landscape.

Images of preliminary locomotion policies for hopping and
bipedal walking for simulated 2D robots are shown in Figure 1.
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