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I. INTRODUCTION

Policy search methods can in principle learn controllers for
a wide range of locomotion tasks automatically [8, 3, 7, 9, 1].
However, these algorithms typically require a carefully engi-
neered policy class for each locomotion task. A policy class
designed for one task, such as fast running, may not be effec-
tive for learning another task, such as rough terrain traversal.
Recently developed guided policy search methods can learn
general-purpose policies represented by neural networks, with-
out task-specific engineering, by using trajectory optimization
to find successful task executions [4, 5, 6]. We summarize our
recent results on learning locomotion controllers with guided
policy search, and present a novel trajectory optimization
algorithm that can be used with guided policy search to learn
policies even under unknown system dynamics.

II. GUIDED POLICY SEARCH

Guided policy search (GPS) methods optimize the param-
eters θ of a policy πθ(ut|xt) with respect to a cost `(xt,ut)
by using trajectory optimization to guide the policy toward
good solutions. A sketch of the guided policy search method
is provided in Algorithm 1. The key component of GPS is
the use of samples around optimized trajectories to improve
the policy. These samples serve to illustrate successful task
executions, and allow the difficult temporal aspects of the
control problem to be handled with trajectory optimization.
A second key component is the iterative reoptimization of
the trajectories with an objective that encourages low cost
and agreement with the current policy πθ. This adaptation
procedure gradually forces trajectory optimization to converge
to a solution that is realizable under the policy.

In Figure 1, we show some simulated locomotion controllers
trained with GPS under known dynamics. These results in-
clude 3D humanoid running on uneven terrain and recovery
from strong lateral pushes. The push recovery controller is
trained on four different pushes to capture a variety of recovery
strategies, and the learned policy can recover from pushes
of 250 to 500 Newtons delivered over 100 ms at different
points in the gait. All experiments used a single example
demonstration to initialize the trajectory, and a simulator of
the dynamics was used during trajectory optimization. Videos
are available on the websites associated with these papers.1 2

1http://graphics.stanford.edu/projects/cgpspaper/index.htm
2http://graphics.stanford.edu/projects/gpspaper/index.htm

Algorithm 1 Guided policy search sketch
1: Initialize the trajectories {τ1, . . . , τM} with trajectory op-

timization and/or examples
2: for iteration k = 1 to K do
3: Generate samples S around {τ1, . . . , τM}
4: Use samples S to optimize θ and improve the policy
5: Reoptimize {τ1, . . . , τM} to agree with πθ
6: end for
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Fig. 1. Controllers trained with guided policy search for running on uneven
terrain and push recovery. Adapted from [4, 6].

III. LEARNING WITH UNKNOWN DYNAMICS

Using simulated dynamics models presents serious chal-
lenges, since even an accurately modeled robotic platform
may respond differently from the simulation in the presence of
contacts. We are currently developing a trajectory optimization
method for guided policy search that does not rely on known
dynamics. Similarly to differential dynamic programming [2],
we use linearized dynamics and an LQR backward pass to
obtain time-varying linear feedbacks. Rollouts using these
feedbacks can then define a new trajectory. To work with
unknown dynamics, we construct a stochastic linear Gaussian
controller, which induces a distribution over trajectories. We
then sample trajectories from this distribution using rollouts
of the stochastic controller, use them to refit the time-varying
linear dynamics model, and repeat the process.

One challenge with such local dynamics models is that the
LQR update can drastically change the trajectory, leading to
instability and divergence when new samples are generated
from the new trajectory distribution. Inspired by work in
model-free policy search [7], we bound the KL-divergence
between the new and old trajectory distributions, allowing the
method to make consistent, stable progress. The constrained
problem can still be solved by an LQR-like method, and can be
used with GPS to learn neural network policies under unknown
dynamics. Preliminary results show that this method can learn
simple walking controllers with 30 minutes of experience, and
we are working to further improve sample efficiency.

http://graphics.stanford.edu/projects/cgpspaper/index.htm
http://graphics.stanford.edu/projects/gpspaper/index.htm
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