

Manipulation vs. Locomotion

NSF Workshop: Locomotion and Manipulation

Alfred A. Rizzi Marc Raibert Boston Dynamics

Then and Now

- Juggling circa 1995
 - Hybrid controller selection to bring ball to rest (sequential composition)
- Spot robot "kick recovery" circa January 2015
 - Hybrid controller selection to bring the robot to a stand

Mobile Manipulation (motivation) Boston Dynamics

- Dynamic full body manipulation
 - Increased Workspace:
 'Reach the top shelf'
 - Increased Strength:'Lift with your legs'
 - Increased Velocity:'Step into the throw'
- Requires coordinated motion of dynamic high DoF systems

Mobile Manipulation (example)

X

- Arm payload 6.8 Kg
- 16.5 Kg Dynamic lift

Boston Dynamics

- "Arm" throw 2.9 m
- Full "body" throw 5 m
- Step into and recover after throw
- Arm-body-leg coord.

- **Boston**Dynamics

- Conjecture:
 - The distinction is dynamics not kinematics
 - Both have plenty of non-holonomic constraints
 - Interesting when operating near performance limits
 - Dynamics and performance limits may not be dual
 - Inertia of arm/hand to payload vs. leg/wheel to body
 - Force constraints depend on kinematics and contact state
 - Other "inconsistencies"
 - Periodic vs. episodic behavior
 - Intermittent vs. continuous contact
- What about
 - Mobipulation, Full Body Dynamic Manipulation, Legipulation?

Legipulation?

• When is a leg an arm or a foot a hand?

Momentum Balance

BostonDynamics

• Is there a dual for this?

Behavior/Controller Composition Boston Dynamics

- Φ_3 Φ_1 Φ_1 Φ_0
- State transitions based on estimates and measurements of system state

Build complex behavior from

many simple controllers

 Sequential composition simplifies encoding complex behavior (improved robustness)

Behavior Transitions

Boston Dynamics

- Automatic transition to a "catch" c. 1996
- Transition driven by ball state (position & velocity)

Behavior Transitions

BostonDynamics

- Automatic transition to a "stair climbing" c. 2005
- Transition driven by contact state (position & force)

Behavior Transitions

- Operator cues desired behavior
- Transition depends on state estimates and contact state

Questions?

