
Katherine J. Kuchenbecker, Ph.D.!
Mechanical Engineering and Applied Mechanics,  

Computer & Information Science, Electrical & Systems Engineering, and Bioengineering!
Haptics Group, GRASP Laboratory!

University of Pennsylvania

Key Barriers to	


Haptic Intelligence in Robotics



https://flic.kr/p/8XYzPQ

https://flic.kr/p/8XYzPQ


https://flic.kr/p/9i4vFj

https://flic.kr/p/9i4vFj


Can you light a match  
with numb fingers?













Haptics	
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(a) Force at a distance (b) Momentum wheel (c) Steered momentum wheel

Figure 2: Various methods by which a haptic device can create ungrounded torque feedback using mass and inertia. (a) Torque by F⃗gravity

at a distance. This effect is used in the TorqueBAR. (b) Axes of actuation and output of the spinning mass momentum wheel. ˙⃗ωflywheel is
the angular acceleration of input. This effect is used in the GyroCube. (c) Axes of actuation and output of the steered spinning mass. ω⃗input

is the angular velocity of input, ω⃗flywheel is the angular velocity of the flywheel, and ω⃗output is the output angular velocity. This effect is
used in the Gyro Moment Display and the iTorqU 1.0 and 2.0.

2 PRIOR ART IN UNGROUNDED TORQUE FEEDBACK

Exploring a variety of different actuation methods, significant de-
velopments in the field of ungrounded torque output haptic devices
include the TorqueBAR [8], the GyroCube [10], and the Gyro Mo-
ment Display [11], each of which will be described below.

Developed by Swindells, Unden, and Sang [8], the single-
degree-of-freedom TorqueBAR system generates moments about
a set of handles by moving a large mass along a linear slide, as
shown in Figure 2(a). The TorqueBAR system has a 48-cm long
slide and uses an accelerometer to measure the tilt angle. In a series
of human-subject tests, the authors were able to show that torque
feedback aided subjects in performing a simple position trajectory-
matching task.

As an alternative mode of actuation, the GyroCube [10] is a
handheld device containing three fixed-axis, orthogonal flywheels
which can be accelerated or decelerated to generate torques about
the major axes, as shown in Figure 2(b). Unfortunately, experimen-
tal results found that users had difficulty distinguishing the direction
of the generated torques, most likely due to gyroscopic effects (i.e.,
because all three wheels were spinning when the angular momen-
tum of one was changed, the other two may have acted as momen-
tum wheels, thereby creating unintended gyroscopic moments that
interfered with the intended torque output).

Lastly, the Gyro Moment Display [11] capitalizes on the gy-
roscopic effect by mounting a rotating disk in a two-axis gimbal.
By controlling the angular rate of the gimbal axes, the device is
capable of generating torques orthogonal to the rotational axis of
the flywheel, as shown in Figure 2(c). One significant benefit of
using controlled-rate gyros (as opposed to momentum wheels) is
that when the inertia and speed of the flywheel are both relatively
large, small changes in the gimbal rates result in significant output
torques. While capable of producing arbitrary ungrounded torques,
the authors noted that with a relatively small range of gimbal travel
(±50 degrees for each axes), the Gyro Moment Display required
a significant amount of time to return the gyroscope to a centered
configuration, thereby severely limiting the device bandwidth.

3 FIRST PROTOTYPE: THE ITORQU 1.0
Taking inspiration from the prior art in ungrounded torque feed-
back, we developed a single-axis proof-of-concept device in the
spring of 2008. As shown in Figure 3, this version included a
steel flywheel (shown in Figure 4) mounted within a single gim-
bal driven by a hobby servo. A two-axis accelerometer was used
to resolve the spatial orientation of the device relative to ground.

Figure 3: The iTorqU 1.0

The system was able to display ungrounded torques by driving the
gimbal at a given rate. For low-speed user inputs, it was able to
achieve pseudo-transparency (the user could not detect the small
torque being applied) when rotated about the gimbal axis. This sec-
tion presents the design and development of this prototype, with a
focus on the lessons learned.

3.1 Design
Mechanical - For rapid prototyping, the housing, internal gim-
bal cage, and handles were all constructed using fused-deposition-
modeling (FDM) from ABS plastic. Given the relatively low
strength of the plastic, the unit was designed with two handles
for the user to grasp, as can be seen in Figure 5. To minimize
complexity and development time, the system included only one
gimbal axis which was oriented normal to the handles. Two fly-
wheels were designed and tested, one from aluminum (m = 95 g,
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Both robotic locomotion  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Are any types of haptic feedback 
both technically feasible and  

clinically beneficial?



Table 1 | Tactile sensory innervation of the hand

Afferent type  
(and response properties)

Receptive field  
(and probe)

Density  
(afferents per cm2)

FA-I (fast-adapting type I) 
Meissner endings

• Sensitive to dynamic skin 
deformation of relatively 
high frequency (~5–50 Hz)

• Insensitive to static force
• Transmit enhanced 

representations of local 
spatial discontinuities 
(e.g., edge contours and 
Braille-like stimuli)

SA-I (slowly-adapting type I) 
Merkel endings

• Sensitive to low-frequency 
dynamic skin deformations 
(<~5 Hz)

• Sensitive to static force
• Transmit enhanced 

representations of local 
spatial discontinuities

FA-II (fast-adapting type II) 
Pacini ending

• Extremely sensitive to 
mechanical transients and 
high-frequency vibrations 
(~40–400 Hz) propagating 
through tissues

• Insensitive to static force
• Respond to distant events 

acting on hand-held objects

SA-II (slowly-adapting type II) 
Ruffini-like endings

• Low dynamic sensitivity
• Sensitive to static force
• Sense tension in dermal and 

subcutaneous collagenous 
fibre strands

• Can fire in the absence 
of externally applied 
stimulation and respond to 
remotely applied stretching 
of the skin

Data from REFS 6,20.

Nature Reviews | Neuroscience

Weak pointed touch

Weak pointed touch

Light tapping

Touch or skin stretch

140

70

0

Action-phase controller
A learned sensorimotor 
‘control policy’ that uses 
specific sensory information 
and sensory predictions to 
generate motor commands  
to attain a sensory goal.

Sensorimotor control point
A planned contact event in 
which predicted and actual 
sensory signals are compared 
to assess the outcome of an 
executed action-phase 
controller.

largely subconsciously and very rapidly, the use of tac-
tile signals differs across tasks and task phases, and the 
forces that are involved in manipulation typically differ 
from the forces that are present during gentle touch.

The information that a mechanoreceptive affer-
ent conveys depends on several factors, including the 
branching of the nerve terminal, the mechanical proper-
ties of the end organs of the nerve endings, the anchor-
ing of the end organs in the surrounding tissues and, not 
least, the overall mechanical deformational properties of 
these tissues. Thus, the distributed patterns of stresses 
and strains that develop in the skin and the underlying 
tissues when a fingertip interacts with an object affect 
both afferents that terminate in contact areas and affer-
ents that terminate remotely21–23. This implies that the 

actual receptive field of an afferent can be considerably 
larger than the classical cutaneous receptive field deline-
ated by lightly touching the hand with a  pointed object 
(TABLE 1). Consequently, models of neural encoding of 
tactile stimuli that visualize the receptor mosaic as a 
two-dimensional pixel-like array of densely localized 
sensors distributed over a flat skin surface15–17 are not 
viable for predicting tactile signalling in manipulation 
tasks. Importantly, the functional overlap of large recep-
tive fields can enhance rather than degrade the encoding 
of spatiotemporal information24,25.

Owing to the mechanical properties of the fingertip, the 
mapping between fingertip events and afferent responses 
is highly complex16,22,23. Simply looking at how the  
pattern of stress develops in the contact area when  
the fingertip contacts a flat surface demonstrates this 
complexity (BOX 2). Researchers have attempted to model 
the mechanics of the fingertip while incorporating its 
composite material properties, with the goal of predict-
ing the responses of populations of tactile afferents to 
various fingertip stimuli26–34. However, no model yet 
possesses the level of realism that satisfies this goal.

Contact events and action goals in manipulation
Dexterous manipulation tasks can be broken down 
into a series of action phases, usually delimited by the 
mechanical events that represent subgoals of the task 
(see REFS 5,35 for details). For example, when picking 
up a hammer to strike a nail, contact between the digits 
and the handle marks the end of the reach phase; the 
braking of contact between the hammer and the support 
surface marks the end of the load phase; and contact 
between the hammer head and the nail marks the end of 
the swing phase. Mechanical events involved in manipu-
lation generate specific patterns of activity in the tactile 
afferents and often also in auditory and visual afferents. 
Thus, manipulation tasks can be specified as a sequence 
of specific sensory events linked to subgoals.

To achieve these subgoals the brain has to select and 
execute appropriate action-phase controllers5 (BOX 3). In 
order to accurately predict the required motor output 
and associated sensory events, action-phase control-
lers must have information about the properties of the 
objects involved and the current state of the motor appa-
ratus. If predictions are erroneous, corrective actions can 
be launched based on real-time sensory information. 
However, because of the long time delays in sensorimotor 
control loops engaged in corrective actions (~100 ms), 
dexterous manipulation is not possible unless predictions 
are accurate5. In order to smoothly link action phases, 
the predicted terminal sensory state of the active con-
troller could be used as the initial state by the controller 
responsible for the next action phase. If the brain relied 
on peripheral afferent information to obtain this state 
information, stuttering phase transitions would occur.

The comparison of predicted and actual sensory sig-
nals can be used to monitor task progression and detect 
performance errors (BOX 3). Contact events, which denote 
completion of action goals, represent crucial sensorimotor 
control points because they give rise to discrete sensory 
signals in one or more modalities. If an error is detected, 
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The tactile afferents that innervate the inside of the hand 
signal the transformation of soft tissues that occurs when 
the hand interacts with objects and thus provide infor-
mation about the physical properties of the object and 
the contact between the object and the hand. People with 
impaired tactile sensibility have difficulties with many 
everyday activities because the brain lacks the infor-
mation about mechanical contact states that is needed 
to plan and control object manipulations. Vision pro-
vides only indirect information about such mechani-
cal interactions, and proprioceptive afferents exhibit low  
sensitivity to mechanical fingertip events1–4.

In this Review, we address emerging concepts regard-
ing the use of tactile information by the brain in manipu-
lation tasks. In doing so, we discuss the notion that the 
planning and control of manipulation tasks is centred 
on mechanical events that mark transitions between 
consecutive action phases and that represent subgoals of 
the overall task. We highlight recent findings that help 
explain the speed with which the brain detects and classi-
fies tactile fingertip events in object manipulation. Finally, 
we discuss multisensory representation of action goals in 
object manipulation. Our account differs from a recent 
review of tactile signals in manipulation5 by emphasizing 
the use of these signals in the control of manipulatory 
tasks, by considering how other sensory signals contrib-
ute to this control and by discussing the central neural 
mechanisms involved in manipulation tasks.

Tactile sensors encoding fingertip transformations
When humans manipulate objects, the brain uses tac-
tile afferent information related to the time course, 
magnitude, direction and spatial distribution of contact 
forces, the shapes of contacted surfaces, and the friction 
between contacted surfaces and the digits. The inside of 

the human hand is equipped with four functionally dis-
tinct types of tactile afferents (TABLE 1; reviewed in more 
detail in REFS 5,6). FA-I (fast-adapting type I) and SA-I 
(slow-adapting type I) afferents terminate superficially in 
the skin, with a particularly high density in the fingertips. 
FA-Is exhibit sensitivity to dynamic skin deformations of 
relatively high frequency7,8, whereas SA-Is are most easily 
excited by lower-frequency skin deformations7,8 and can 
respond to sustained deformation. There are more FA-I 
afferents than SA-I afferents in the fingertips (TABLE 1), 
reflecting the importance of extracting spatial features 
of dynamic mechanical events, such as the skin forming 
and breaking contact with objects or scanning across a 
textured surface.

FA-II and SA-II afferents innervate the hand with 
a lower and roughly uniform density and terminate 
deeper in dermal and subdermal fibrous tissues. FA-II 
afferents are optimized for detecting transient mechani-
cal events7–10. Hundreds of FA-II afferents, distributed 
throughout the hand, can be excited when hand-held 
objects contact or break contact with other objects11. 
SA-II afferents can respond to remotely applied lateral 
stretching of the skin12,13 and can be sensitive to the tan-
gential shear strain to the skin that occurs during object 
manipulation2,11. SA-II-like afferents are found in most 
fibrous tissues (such as muscle fascias and joint capsules 
and ligaments)14 and there is evidence that they can act 
as proprioceptors (BOX 1).

Traditional studies on tactile sensing that examine 
correlations between afferent signals and perceptual 
(declarative) phenomena evoked by gently touching pas-
sive digits (for reviews see REFS 6,14–20) provide little 
information about the encoding and use of tactile infor-
mation in object manipulation for several reasons: the 
control processes that are active in manipulation operate 
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Tactile afferents
Fast-conducting myelinated 
afferent neurons that convey 
signals to the brain from 
low-threshold 
mechanoreceptors in body 
areas that actively contact 
objects — that is, the inside  
of the hand, the sole of the 
foot, the lips, the tongue and 
the oral mucosa.

Proprioceptive afferents
Fast-conducting myelinated 
afferents that provide 
information about joint 
configurations and muscle 
states. These include 
mechanoreceptive afferents 
from the hairy skin, muscles, 
joints and connective tissues.

Coding and use of tactile signals  
from the fingertips in object 
manipulation tasks
Roland S. Johansson* and J. Randall Flanagan‡

Abstract | During object manipulation tasks, the brain selects and implements action-phase 

controllers that use sensory predictions and afferent signals to tailor motor output to the 

physical properties of the objects involved. Analysis of signals in tactile afferent neurons and 

central processes in humans reveals how contact events are encoded and used to monitor 

and update task performance.
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Table 1 | Tactile sensory innervation of the hand

Afferent type  
(and response properties)

Receptive field  
(and probe)

Density  
(afferents per cm2)

FA-I (fast-adapting type I) 
Meissner endings

• Sensitive to dynamic skin 
deformation of relatively 
high frequency (~5–50 Hz)

• Insensitive to static force
• Transmit enhanced 

representations of local 
spatial discontinuities 
(e.g., edge contours and 
Braille-like stimuli)

SA-I (slowly-adapting type I) 
Merkel endings

• Sensitive to low-frequency 
dynamic skin deformations 
(<~5 Hz)

• Sensitive to static force
• Transmit enhanced 

representations of local 
spatial discontinuities

FA-II (fast-adapting type II) 
Pacini ending

• Extremely sensitive to 
mechanical transients and 
high-frequency vibrations 
(~40–400 Hz) propagating 
through tissues

• Insensitive to static force
• Respond to distant events 

acting on hand-held objects

SA-II (slowly-adapting type II) 
Ruffini-like endings

• Low dynamic sensitivity
• Sensitive to static force
• Sense tension in dermal and 

subcutaneous collagenous 
fibre strands

• Can fire in the absence 
of externally applied 
stimulation and respond to 
remotely applied stretching 
of the skin

Data from REFS 6,20.
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largely subconsciously and very rapidly, the use of tac-
tile signals differs across tasks and task phases, and the 
forces that are involved in manipulation typically differ 
from the forces that are present during gentle touch.

The information that a mechanoreceptive affer-
ent conveys depends on several factors, including the 
branching of the nerve terminal, the mechanical proper-
ties of the end organs of the nerve endings, the anchor-
ing of the end organs in the surrounding tissues and, not 
least, the overall mechanical deformational properties of 
these tissues. Thus, the distributed patterns of stresses 
and strains that develop in the skin and the underlying 
tissues when a fingertip interacts with an object affect 
both afferents that terminate in contact areas and affer-
ents that terminate remotely21–23. This implies that the 

actual receptive field of an afferent can be considerably 
larger than the classical cutaneous receptive field deline-
ated by lightly touching the hand with a  pointed object 
(TABLE 1). Consequently, models of neural encoding of 
tactile stimuli that visualize the receptor mosaic as a 
two-dimensional pixel-like array of densely localized 
sensors distributed over a flat skin surface15–17 are not 
viable for predicting tactile signalling in manipulation 
tasks. Importantly, the functional overlap of large recep-
tive fields can enhance rather than degrade the encoding 
of spatiotemporal information24,25.

Owing to the mechanical properties of the fingertip, the 
mapping between fingertip events and afferent responses 
is highly complex16,22,23. Simply looking at how the  
pattern of stress develops in the contact area when  
the fingertip contacts a flat surface demonstrates this 
complexity (BOX 2). Researchers have attempted to model 
the mechanics of the fingertip while incorporating its 
composite material properties, with the goal of predict-
ing the responses of populations of tactile afferents to 
various fingertip stimuli26–34. However, no model yet 
possesses the level of realism that satisfies this goal.

Contact events and action goals in manipulation
Dexterous manipulation tasks can be broken down 
into a series of action phases, usually delimited by the 
mechanical events that represent subgoals of the task 
(see REFS 5,35 for details). For example, when picking 
up a hammer to strike a nail, contact between the digits 
and the handle marks the end of the reach phase; the 
braking of contact between the hammer and the support 
surface marks the end of the load phase; and contact 
between the hammer head and the nail marks the end of 
the swing phase. Mechanical events involved in manipu-
lation generate specific patterns of activity in the tactile 
afferents and often also in auditory and visual afferents. 
Thus, manipulation tasks can be specified as a sequence 
of specific sensory events linked to subgoals.

To achieve these subgoals the brain has to select and 
execute appropriate action-phase controllers5 (BOX 3). In 
order to accurately predict the required motor output 
and associated sensory events, action-phase control-
lers must have information about the properties of the 
objects involved and the current state of the motor appa-
ratus. If predictions are erroneous, corrective actions can 
be launched based on real-time sensory information. 
However, because of the long time delays in sensorimotor 
control loops engaged in corrective actions (~100 ms), 
dexterous manipulation is not possible unless predictions 
are accurate5. In order to smoothly link action phases, 
the predicted terminal sensory state of the active con-
troller could be used as the initial state by the controller 
responsible for the next action phase. If the brain relied 
on peripheral afferent information to obtain this state 
information, stuttering phase transitions would occur.

The comparison of predicted and actual sensory sig-
nals can be used to monitor task progression and detect 
performance errors (BOX 3). Contact events, which denote 
completion of action goals, represent crucial sensorimotor 
control points because they give rise to discrete sensory 
signals in one or more modalities. If an error is detected, 
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forces than the SA-I or the FA-I populations, because they 
innervate the fingertip more sparsely103 (TABLE 1).

Occasionally, frictional slips occur that rapidly shift 
the object load from the slipping digit to the other 

digits engaged in gripping the object. Such load shifts, 
which are reliably signalled by FA-I afferents2,96, trigger 
a phase-appropriate corrective action that results in a 
lasting update of grip-to-load force ratios at the engaged 

 Box 3 | Sensorimotor control points in a prototypic object manipulation task

Manipulation tasks are characterized by a sequence of action phases separated by contact events that define task 

subgoals. Consider the task of grasping an object, lifting it from a table, holding it in the air and then replacing it (see part 

a of the figure)63. The goal of the initial reach phase is marked by the digits contacting the object and the goal of the 

subsequent load phase is marked by the breaking of contact between the object and the support surface. These  

and subsequent contact events correspond to discrete sensory events that are characterized by specific afferent neural 

signatures in the tactile modality (part b) and often in the auditory and visual modalities (not shown). Such signatures 

specify the functional goals of successive action phases. In addition to generating motor commands, each action-phase 

controller predicts the sensory events that signify subgoal attainment. Thus, the brain can monitor task progression and 

produce corrective actions if mismatches are detected. Recordings of tactile afferent signals in single neurons of the 

human median nerve during the lift and replace task11 have shown that there are distinct discharges from the fingertips at 

four points corresponding to subgoal events (part b): responses primarily in FA-I (fast-adapting type I) afferents when the 

object is contacted and released and responses in FA-II afferents related to the transient mechanical events that 

accompany the object lifting off and being replaced on the support surface. In addition to responses to distinct contact 

events, many SA-I (slow-adapting type I) and SA-II afferents discharge when static forces are applied to the object. Figure 

is modified, with permission, from REF. 5  (2008) Academic Press.  
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Fig. 1. The Willow Garage PR2 is an example of a modern robotic platform that has
high-bandwidth acceleration sensors embedded in its grippers. Gripper joint and wrist
roll joint motion are indicated with green and red arrows, respectively. Time series
acceleration plots show examples of a clean vibrotactile contact event signal and robot
ego- vibrations; the two signals have similar magnitude and spectral content, reducing
signal to noise ratio during robot movement.

have developed methods for autonomous robotic manipulation systems to use
the perceptual cues provided by vibrotactile acceleration signals (e.g., [9,22]).

Unfortunately, measurement of tactile acceleration signals can easily be mask-
ed or degraded by vibrations that are generated by a robot’s own motion, as
illustrated in Fig. 1. These “ego-vibrations” often lie within the same frequency
range as the external contact signals that one wants to detect for presentation
to the human operator or for use in an autonomous robot’s controller. Thus
the noise-reduction performance of traditional filters (e.g., high-pass, low-pass,
notch) is severely limited.

Some previous research in this area has recognized that ego-vibrations mask
desired signals and degrade system performance. For example, surgeons using
our VerroTouch feedback system occasionally comment that feeling the motion
of the da Vinci surgical robot distracts from the vibration cues caused by con-
tact [18]. The primary means of addressing ego-vibrations has been through
electromechanical system design. Some researchers have designed custom hard-
ware to mechanically isolate the acceleration sensors from robot motion vibra-
tions [14,9,7]. Others have used robotic hardware that is specifically designed for
smooth motion, such as Sensable’s Phantom Omni haptic device [20,19]. Others
have used their accelerometer only in limited contexts, when they knew that
robot motion noise would be small [22].

To improve the performance of vibration feedback systems for teleopera-
tion and to enable measurement of useful high-frequency tactile accelerations
on robotic platforms that are not mechanically optimized, we propose a signal
processing approach that mirrors human neuropsychology. The human central

wrist roll

grip aperture
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nervous system is believed to use the motor commands sent to the muscles to
predict the sensory consequences of movement. These predictions allow one to
distinguish self-produced sensations from those arising from external events [5].

Thus, we propose to use knowledge of robot motion to predict the contribu-
tion of ego-vibration noise to the measured acceleration signal, and to remove
this contribution through spectral subtraction, a method that was originally
developed for noise suppression in speech processing [6]. The basic idea of spec-
tral subtraction is that noise in signals can be removed by transforming to the
frequency domain and subtracting out an estimate of the noise spectrum. Addi-
tionally, Ince et al. have successfully applied this technique to the similar problem
of audible robot motion noise in robot audition [10,11].

The mathematics and signal processing pipeline of spectral subtraction are
detailed in Section 2. Section 3 describes our implementation of this approach
on a Willow Garage PR2 humanoid robot, which experiences significant ego-
vibrations from its wrist roll and gripper joints. We evaluate the performance of
this approach in Section 4, and we conclude with Section 5.

2 Spectral Subtraction

It is natural to compare vibrotactile acceleration signals to audio signals; the
primary way in which these signals differ is in bandwidth. While human skin
can perceive vibrotactile cues up to approximately 1000 Hz [3], audio signals are
detectable up to 20,000 Hz. Compared to the study of audio signals, the study
of vibrotactile acceleration signals is quite immature. Thus we are inspired to
look to the audio processing literature, as many of their methods can be directly
adapted to handling vibrotactile signals.

The problem of robot ego-vibrations seems most similar to the problem of
suppressing additive background noise from a single audio channel of speech.
Research into this problem is generally classified as speech enhancement or noise
reduction; many of the best methods in this area are reviewed in [23,4]. Among
these approaches, spectral subtraction seems particularly promising for dealing
with ego-vibrations because of its straightforward implementation and inexpen-
sive computational requirements that allow for implementation in real-time ap-
plications with minimal processing latency.

This section describes our proposed adaptation of spectral subtraction to the
problem of ego-vibration suppression in tactile acceleration measurements. Fig. 2
provides a block-diagram illustration of the algorithm. The mathematical nota-
tion used here is primarily adapted from [23].

Block Processing. Mathematically, noisy observations from an accelerometer
can be modeled as

y[k] = x[k] + n[k], (1)

where x[k] is the vibrotactile event signal, n[k] is additive noise from ego-
vibrations, and k is the discrete time index. Following the methods of [16],

signal noisemeasurement
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Fig. 2. Block diagram of the spectral subtraction method adapted for ego-vibration
suppression in vibrotactile signals

the multiple orthogonal axes of accelerometer output are combined into a single
channel by addition, a computationally simple approach that yields a good spec-
tral match and temporal match with the original signals without introducing any
time delay. A band-pass filter then removes both low-frequency cues pertaining
to robot motion and high-frequency signals that are not detectable to humans.

The one-dimensional filtered signal is then subjected to block processing [6]
as follows:

1. The incoming signal y[k] is buffered into small time buffers yi[k] of length L
that overlap by M samples.

2. Each buffered block yi[k] is multiplied by a window function w[k] to reduce
discontinuities at the end points during discrete Fourier transform (DFT).

3. Each windowed buffer is subjected to spectral subtraction as described in
the next subsection.

4. The resultant output signals x̂i[k] are recombined into the full x̂[k] using the
overlap-add method [2].

Typical parameter choices for block processing are 50% buffer overlap (M =
L/2), and a normalized Hamming window function for w[k]. Buffer length choice
is a trade-off between frequency resolution and time delay; block processing
implementation introduces an algorithm delay of one buffer length.

Magnitude Subtraction. After the noisy input signal has been buffered and
windowed, each short segment yi[k] is transformed into the frequency domain
using the discrete Fourier transform (DFT ),

yi[k]
DFT−−−→ Yi(f) = Xi(f) +Ni(f). (2)

The operation of spectral subtraction can be described by the equation

|X̂i(f)| = |Yi(f)|− |N̂i(f)|, (3)

where |X̂i(f)| and |N̂i(f)| are the estimated magnitude spectra of the restored
vibrotactile event signal and the noise spectrum respectively. Derivation of the
ego-vibration’s spectral magnitude estimate |N̂i(f)| will be discussed in the next
subsection. Given the random nature of Ni(f), this operation will sometimes
result in negative values for a discrete frequency subband f ; negative values are
consequently set to zero.

Windowed Spectral Subtraction Process
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the multiple orthogonal axes of accelerometer output are combined into a single
channel by addition, a computationally simple approach that yields a good spec-
tral match and temporal match with the original signals without introducing any
time delay. A band-pass filter then removes both low-frequency cues pertaining
to robot motion and high-frequency signals that are not detectable to humans.

The one-dimensional filtered signal is then subjected to block processing [6]
as follows:

1. The incoming signal y[k] is buffered into small time buffers yi[k] of length L
that overlap by M samples.

2. Each buffered block yi[k] is multiplied by a window function w[k] to reduce
discontinuities at the end points during discrete Fourier transform (DFT).

3. Each windowed buffer is subjected to spectral subtraction as described in
the next subsection.

4. The resultant output signals x̂i[k] are recombined into the full x̂[k] using the
overlap-add method [2].

Typical parameter choices for block processing are 50% buffer overlap (M =
L/2), and a normalized Hamming window function for w[k]. Buffer length choice
is a trade-off between frequency resolution and time delay; block processing
implementation introduces an algorithm delay of one buffer length.

Magnitude Subtraction. After the noisy input signal has been buffered and
windowed, each short segment yi[k] is transformed into the frequency domain
using the discrete Fourier transform (DFT ),

yi[k]
DFT−−−→ Yi(f) = Xi(f) +Ni(f). (2)

The operation of spectral subtraction can be described by the equation

|X̂i(f)| = |Yi(f)|− |N̂i(f)|, (3)

where |X̂i(f)| and |N̂i(f)| are the estimated magnitude spectra of the restored
vibrotactile event signal and the noise spectrum respectively. Derivation of the
ego-vibration’s spectral magnitude estimate |N̂i(f)| will be discussed in the next
subsection. Given the random nature of Ni(f), this operation will sometimes
result in negative values for a discrete frequency subband f ; negative values are
consequently set to zero.
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nervous system is believed to use the motor commands sent to the muscles to
predict the sensory consequences of movement. These predictions allow one to
distinguish self-produced sensations from those arising from external events [5].

Thus, we propose to use knowledge of robot motion to predict the contribu-
tion of ego-vibration noise to the measured acceleration signal, and to remove
this contribution through spectral subtraction, a method that was originally
developed for noise suppression in speech processing [6]. The basic idea of spec-
tral subtraction is that noise in signals can be removed by transforming to the
frequency domain and subtracting out an estimate of the noise spectrum. Addi-
tionally, Ince et al. have successfully applied this technique to the similar problem
of audible robot motion noise in robot audition [10,11].

The mathematics and signal processing pipeline of spectral subtraction are
detailed in Section 2. Section 3 describes our implementation of this approach
on a Willow Garage PR2 humanoid robot, which experiences significant ego-
vibrations from its wrist roll and gripper joints. We evaluate the performance of
this approach in Section 4, and we conclude with Section 5.

2 Spectral Subtraction

It is natural to compare vibrotactile acceleration signals to audio signals; the
primary way in which these signals differ is in bandwidth. While human skin
can perceive vibrotactile cues up to approximately 1000 Hz [3], audio signals are
detectable up to 20,000 Hz. Compared to the study of audio signals, the study
of vibrotactile acceleration signals is quite immature. Thus we are inspired to
look to the audio processing literature, as many of their methods can be directly
adapted to handling vibrotactile signals.

The problem of robot ego-vibrations seems most similar to the problem of
suppressing additive background noise from a single audio channel of speech.
Research into this problem is generally classified as speech enhancement or noise
reduction; many of the best methods in this area are reviewed in [23,4]. Among
these approaches, spectral subtraction seems particularly promising for dealing
with ego-vibrations because of its straightforward implementation and inexpen-
sive computational requirements that allow for implementation in real-time ap-
plications with minimal processing latency.

This section describes our proposed adaptation of spectral subtraction to the
problem of ego-vibration suppression in tactile acceleration measurements. Fig. 2
provides a block-diagram illustration of the algorithm. The mathematical nota-
tion used here is primarily adapted from [23].

Block Processing. Mathematically, noisy observations from an accelerometer
can be modeled as

y[k] = x[k] + n[k], (1)

where x[k] is the vibrotactile event signal, n[k] is additive noise from ego-
vibrations, and k is the discrete time index. Following the methods of [16],
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Fig. 3. Plots of the estimated ego-vibration magnitude spectra caused by combinations
of gripper and wrist roll speeds. Speeds are defined as a percentage of the joint’s
maximum speed. The x-axes are frequency (Hz) and the y-axes are amplitude (m/s2).
The colored lines show small variations in noise at the four joint velocity direction
combinations noted in the legend. Note that the top-left plot shows the background
accelerometer noise that is present when the robot is stationary.

wrist roll velocity and gripper velocity were sampled at intervals of 10% of the
joint’s maximum speed, ranging from -100% (wrist rolling clockwise and gripper
closing at maximum speed) to 100% (wrist rolling counter-clockwise and grip-
per opening at maximum speed). Note that these tests included 0% velocities,
when the wrist and/or gripper are stationary, to ensure measurement of back-
ground accelerometer noise. The data was gathered in semi-continuous 15-second
chunks; while the PR2’s wrist joint is capable of continuous rotation, the grip-
per velocity command had to be reversed when the gripper reached the limits
of its 86 mm translation workspace, so we concatenated multiple acceleration
recordings together for most wrist-gripper velocity combinations.

We calculate the magnitude spectrum for the many overlapping short time
windows of each recording using the same input buffering and windowing ap-
proach described in Section 2, These data points are then used to calculate the
mean µN (f, Θ̇i) and standard deviation σN (f, Θ̇i) of the magnitude spectrum,
which are combined to find |N̂(f, Θ̇i)|. This procedure provides equal spacing
of ego-vibration magnitude spectrum estimates throughout the entire wrist roll
and gripper joint velocity space.

Fig. 3 shows the estimated ego-vibration magnitude spectra for a subset of
the sampled joint velocities, calculated from equation (5). The mean and the
standard deviation of the noise both increase as joint speeds increase. Visual
inspection of the recorded time series data and the noise residuals seems to
indicate that it is reasonable to assume that vibrations depend only on joint
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