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Our Goal:

* Understand and Demonstrate the Dynamical Phenomenon of
Legged Locomotion
e Optimization — Animal studies — robot experiments
* Success == Animal-like Agility and Efficiency
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Our Approach:

* Design a behavior, with passive
dynamics and control as partners

1. Build a robot to embody desired
passive dynamics 1
* Bio-inspired Spring-mass model

2. Control robot using insights from
this model and animal studies '

Passive Dynamics can be good or
bad. Your choices:

* Minimize
e Utilize
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Mechanical Intelligence via a Spring-Mass Model

Captures the basic physics of animal
legged locomotion

Different modes of oscillation produce
walking and running

Strong theoretical background
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Geyer et al. 2006, Birn-Jeffery and Hubicki et al. 2014



Engineering Reasons for Physical Springs

e Unexpected impacts are no
problem

e Force Control: series
elasticity built in!

 Efficiency: cycles gait energy
without motors in the loop

[gun o

* Power: reduce power outpu
of actuators

Improving actuator bandwidth helps with some of these issues.

Oregon State
May 28, 2015 UNIVERSITY

4




ATRIAS - built like a spring-mass model
Assume The Robot Is A Sphere

e Spring-mass features
* Near-massless legs
* Leg springs for energy storage
* Mass concentrated near hip
* Practical features
* Electromechanically actuated
e Abduction/adduction for 3D
* On-board power and computing
* No external tether or support

required
\\::’ Virtual leg
* Very underactuated RS 4
* 6 motors, 12 degrees of -
freedom -
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Validating the Passive Dynamics

e “Perturb” the robot when it’s off
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Passive Dynamics in Hopping/Running Regimes

 Throw the robot. Near-passive operation.
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Passive Dynamics in Walking Regime

e Push the robot. Near-passive operation
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"Passive" Walk
17 steps (6.3 meters) in 8.1 seconds

A Right Leg Foothold
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Successfully Created Desired Passive Dynamics. But...

e ATRIAS passive dynamics = spring-mass model, from the outside
e But there is an internal power loop.

e Passive dynamics are hard to change.
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* Who cares that we’ve achieved spring-mass dynamics?

,* How practical is this passive-dynamic approach? Oregon State
May 28, 2015 UNIVERSITY




Simple Control can result in Robust Operation

e Controller just “nudges” the * Handles energy gracefully

hardware  Dissipation is Helpful
* Gait designed for flat ground * Leg deflection: 50% physical spring,
* Rigid and non-rigid undetected 50% virtual spring

obstacles (it’s blind)
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Dynamic Recoveries Emerge from Simple Controller

* Discrete-level nudges result in sensible recovery maneuvers




Control in 3D

e 2D controller extended to “stand” in place (no feet!)
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Dodgeballs

* Robustness to... different perturbations




Command a non-zero velocity... it walks

. Controller has S|gn|f|cant time dependence. Very clock drlven

08:35;24

16 Oregon State
May 28, 2015 UNIVERSITY




Spring-Mass GRF in 3D Walking

e Passive dynamics preserved in 3D locomotion
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Other Capabilities

* Sidestep, stop/reverse, rough and soft terrain

Sidestepping
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Next Steps

UNIVERSITY
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Next Steps

gility

7?obotics
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To Summarize:
Mechanical Intelligence vs Control Authority

* Every real system has passive dynamics
* Motors, limb rigidity, inertia, etc.
All about actuator limitation
* Power, Energy, Bandwidth
Behavior should be implemented by control, unless...
e Power, Energy, Bandwidth
By engineering passive dynamics, dynamical phenomena can be
utilized
Many challenges of legged locomotion are common to general
physical interaction tasks
e Unexpected impacts
* Significant energy transfer
* Position/Force Control
e Actuator limitations

UNIVERSITY
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Thank you!

OSU ATRIAS Team Collaborators
Siavash Rezazadeh AE ‘%;?i Dr. Hartmut Geyer
Mikhail Jones 1_5; - Carnegie Mellon
Andrew Peekema ' ’ Dr. Jessy Grizzle
Andy Abate - University of Michigan
Johnathan Van Why Dr. Monica Daley
Ryan Domres - Royal Veterinary College

- University of London
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Questions?

ATRIAS

A sample from our weekly “ " videos

Youtube Channel Google+ Page Twitter Handle



Bandwidth

Bandwidth = Measured/Commanded
How do you define force control?

Vary force against a stationary object

Maintain constant force on a randomly moving object
Catch an object (or spacecraft docking, or landing a jump)
Throw an object (jump)

Walk and run

Behave like a spring

Bandwidth depends on the task at hand... but improving acceleration
limits and velocity limits will improve bandwidth for most tasks.
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Planar walking

* Continuous control gains are quite soft, mostly nudging the
actuators in the right direction.
* Leg Deflection: 50% Springs, 50% Motors
* Very Helpful: Allowing for some dissipation via back-driving motors
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Control

* We’ve designed ATRIAS with
spring-mass dynamics that do
a lot of the locomotion
dynamics for us

Controlled quantities inspired
heavily from a reduced-order
model

* Important additions to model

e e.g. Torso, rotational stiffness

ST
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Follow our progress online

* Watch our successes and failures as we prepare for our demo
at the DARPA DRC in June

* YouTube: Posted over 50 videos since January

* Twitter: ATRIAS likes to tweet

* Google+: Oregon State DRL

Click for more ATRIAS Videos
'A @ @A TRIASrobot

OregonStateDRL @ATRIASrobot
Youtube Channel Twitter Handle



