

FIG.I

Biomimetics & Dexterous Manipulation Laboratory

Mark R. Cutkosky Stanford University 2-3 April 2015

Locomotion versus Manipulation

Passive Properties versus Active Control

Workshop Session Themes

3. Passive Properties versus Active Control

1. Manipulation vs Locomotion

Embrace the Environment

From "Hands off" to "Hands on" — robots interact energetically with the environment.

Embracing and exploiting the environment — *not*

Traditional manipulation and motion planning:

- · Carefully plan trajectories in space.
- Highly restrict contacts.
- Minimize uncertainty.

The Pink Panther, stealing a rare diamond from inside a Museum

Biological manipulation and motion planning:

- Any contact is good contact
- Use highly robust strategies and appendages
- If it fails, try again!

Jain et al., "Reaching in clutter with whole-arm tactile sensing," IJRR (2013)

Lessons from biology for bio-inspired design:

- 1. Reduce Complexity Collapse Dimensions
- 2. Manage Energy
- 3. Use Multifunctional Materials Tuned, Integrated & Robust
- 4. Exploit Interaction with Environment

Biological Inspiration

- Control heirarchy
 - Passive component
 - Active component

Mechanical System	Neural System
Feedforward Preflex	<u>Reflex</u>
Motor program Intrinsic musculo- acting through skeletal properties moment arms	Neural feedback loops
Predictive Rapid acting	Slow acting
Passive Dynamic	Active
Self-stabilization	Stabilization

Full and Koditschek, 1999

As robots venture into the world they too need strategies that embrace the environment with:

- models of the physical interaction,
- compliant, robust *mechanisms*
- ability to sense and respond to changing conditions

Hatton et al, ICRA 2013

Modeling physical interactions

Modeling the dynamics of making, breaking contact

Jiang, H., et al, "Modeling the Dynamics of Perching with Opposed-Grip Mechanisms," ICRA 2014

The interesting stuff happens when contact conditions are changing rapidly

Modeling the dynamics of making, breaking contact

Jiang, H., et al, "Modeling the Dynamics of Perching with Opposed-Grip Mechanisms," ICRA 2014

The interesting stuff happens when contact conditions are changing rapidly

"Preflexes": robust, compliant, under-actuated mechanisms

Use end-Effectors that embrace the environment

Modify the physics of the interaction with the environment

Utilization of granular solidification during terrestrial locomotion of hatchling sea turtles Mazouchova, Gravish, Savu, Goldman, Biology Letters (2010)

Modify the physics of the interaction with the environment

If you are small, and friction is inadequate, exploit adhesion!

(a) Required work to load adhesive, (b) corresponding force.(c) Piezo and EPAM actuators match poorly,(d,e) SMA and motor match better

Modify the physics of the interaction with the environment

Modify the physics of the interaction with the environment

Sensing: detect and react to changes in interactions with the environment

Sometimes under-actuation, compliance and mechanical robustness do not suffice...

Sensing the wall

Above: Adhesion sensor detects non-uniform loading.

Right: Comparing normal and shear forces with adhesion limit surface allows loading adjustment

When climbing or perching on a window: *do we have a good grip?*

Multi-axis capacitive tactile sensing

D. M. Aukes, M. R. Cutkosky, S. Kim, J. Ulmen, P. Garcia, H. Stuart, and A. Edsinger, "Design and Testing of a Selectively Compliant Underactuated Hand," International Journal of Robotics Research, v. 33, pp. 721-725.

Dynamic Tactile Signal processing

- New tactile array sensors are fast enough for dynamic tactile sensing and interpretation (e.g. using coherence)
- Sensing is improving, but still impoverished compared to animals

Heyneman & Cutkosky "Slip Classification for Dynamic Tactile Array Sensors," IJRR (2015)

Sensing increases robustness

Video: <u>http://youtu.be/xhtbprB5Rqs</u>

Biological Inspiration

- Control heirarchy
 - Passive component
 - Active component

Mechanical System	Neural System
Feedforward Preflex	<u>Reflex</u>
Motor program Intrinsic musculo- acting through skeletal properties moment arms	Neural feedback loops
Predictive Rapid acting	Slow acting
Passive Dynamic	Active
Self-stabilization	Stabilization

Full and Koditschek, 1999

