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1. Manipulation vs Locomotion
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Manipulation
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Key idea: control internal grasp forces

(in the null space of the equilibrium equations)

to control friction forces
and achieve grasping objectives
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Key idea: control internal forces

(in the null space of the equilibrium equations)

to control friction and adhesion forces
and achieve climbing objectives




Embrace the Environment

From “Hands off” to “Hands on” — robots interact energetically with the environment.




\%! Embracing and exploiting the
L’ environment — not

Traditional manipulation and motion planning:
« Carefully plan trajectories in space.

+ Highly restrict contacts.

« Minimize uncertainty.

The Pink Panther, stealing a rare diamond from inside a Museum




Biological manipulation and motion planning:
« Any contact is good contact

+ Use highly robust strategies and appendages

- If it fails, try again!

Jain et al., “Reaching in clutter with whole-arm
tactile sensing,” IJRR (2013)



Lessons from biology for  pzm
bio-inspired design:

1. Reduce Complexity - Collapse Dimensions

2. Manage Energy

3. Use Multifunctional Materials - Tuned, Integrated
& Robust

4. Exploit Interaction with Environment



Biological Inspiration

* Control heirarchy
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Full and Koditschek, 1999




Embracing and exploiting the environment

As robots venture into the world they too need
strategies that embrace the environment with:

- models of the physical interaction,
- compliant, robust mechanisms

- ability to sense and respond to changing conditions

Easy Terrain difficulty

Flat ground

Pipes & Trees
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Basic gaits Specialized gaits

Hatton et al, ICRA 2013

Hard

Unstructured obstacles

Lo ¢

Non-gait motions



Sim

Modeling physical interactions

Reversed c-leg
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Fluidization effects for running in granular
media [Li,Zhang,Goldman2013]

Friction and adhesion for climbing or grasping
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Jiang, H., et al, "Modeling the Dynamics of Perching with Opposed-Grip
Mechanisms,” ICRA 2014 ,

The interesting stuff happens when
contact conditions are changing rapidly



http://youtu.be/wD-9oAuB9do
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contact conditions are changing rapidly
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"Preflexes”™: robust, compliant,
under-actuated mechanisms

_—

« .
R Robotig hand
Harvard hand

[Dollar, Howe]

Use end-Effectors that embrace the environment 15



Embrace and exploit the environment

Modify the physics of the interaction with the environment

Dash and Roach in granular media fa 5SS
Li et al. SPIE 2010 | Ryt
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Utilization of granular solidification during terrestrial locomotion of hatchling sea turtles
Mazouchova, Gravish, Savu, Goldman, Biology Letters (2010)



Embrace and exploit the environment

Modify the physics of the interaction with the environment

A
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(a) Required work to load adhesive, (b) corresponding
force. (c) Piezo and EPAM actuators match poorly,
(d,e) SMA and motor match better

17



Embrace and exploit the environment

Modify the physics of the interaction with the environment
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Video: http://youtu.be/lvXGjSPOROw
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http://youtu.be/IvXGjSPOR0w

Embrace and exploit the environment

Modify the physics of the interaction with the environment

Video: https://youtu.be/X_iyLWsrPGg



https://youtu.be/X_iyLWsrPGg

% Sensing: detect and react to changes
@@ In interactions with the environment

Sometimes under-actuation, compliance and mechanical robustness do not suffice...
20


https://www.youtube.com/watch?v=270CKEXGAno

\S Sensing the wall

When climbing or perching on a window:
do we have a good grip?
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% Multi-axis capacitive tactile sensing

N

Video: http://youtu.be/3yzSvtY-5JM

D. M. Aukes, M. R. Cutkosky, S. Kim, J. Ulmen, P. Garcia, H. Stuart, and A. Edsinger, “Design and Testing of a Selectively
Compliant Underactuated Hand,” International Journal of Robotics Research, v. 33, pp. 721-725. 22


http://youtu.be/3yzSvtY-5JM

Dynamic Tactile Signal processing

- New tactile array sensors are fast
Rigid Object Contact Patch enough for dynamic tactile
sensing and interpretation
ﬁgg;’ﬁm (e.g. using coherence)
« Sensing is improving, but still
impoverished compared to

animals
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Heyneman & Cutkosky "Slip Classification for Dynamic Tactile Array Sensors," [JRR (2015)
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é} Sensing increases robustness

Video:

Perching success/failure detection: 91% accuracy at 40 ms, 94% at 80 ms — with onboard sensing.


http://youtu.be/xhtbprB5Rqs

Biological Inspiration
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In summary

Model interactions
with the environment

Use compliant,
under-actuated
mechanisms

Sense changes
in interactions,
and respond

Exploit properties
of the interaction

Embrace the
environment

Increase
robustness
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