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Stochastic Environments
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Whg | ocomotion is Hard. ..

Stochastic Environments
variability

[variability doesn’t necessarily
mean uncertainty... ]
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| ocomotion Goals

Robustness
Agility

Energetics
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Robustness
unknown variability
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Robustness
unknown variability

known variability

Energetics
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Robustness
unknown variability Agility
known variability

Energetics
as efficient as practical
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| ocomotion metrics?

Robustness

(Harder?)

(Hardest?)

Energetics

(Easiest to quantify?)
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Energetics: Cost of Transport
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Minimum Cost of Transport E/(mgd)
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Agility vs Energetics Trade-off?
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Rabbit Agility
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Danish Rabbit Hopping Championship, 2010 ©\UC SANTA BARBARA
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(Wait: Did she throw the bunny?)
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Agility and Robustness, Intuitively

 One to many

(can reach points in some open set)

Agility (?)

(arriving at/within some At)

* Many to one

(recover, to some tolerance)

Robustness (?)

UC SANTA BARBARA
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[e.g., “funnels”... Burridge, Rizzi, and Koditschek] {
@ Robotics Lab




Quantifying Agility

* Want to: quantify the set of states
achievable in a characteristic time,

* Penalized by inaccuracies.

Coping with variable terrain is a challenge -
even without uncertainty*. Errors should be
quantifiable, in terms of their impact.

. :
[* e.g., DARPA LittleDog program] O\UC SANTA BARBARA
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Bang-bang control analogy

Reachable area, within a given time,
A is proportional to a2
(a=acceleration)

—>

Process noise would increase the

expected time to a goal state. O%\VUC SANTA BARBARA
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Rock vs. Cannonball

Rock never moves.
Zero agility, since reachable set has zero area.

L I
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Is the cannonball better or worse?
What if the reachable set is also just a
single point? (i.e., if no variability in
trajectory can be commanded)

- What if this is not entirely repeatable?
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Golf analogy

Hitting the ball further can reduce the
total number of shots required.

But bad aim on a long shot will result
in a greater expected number of total
swings to sink the ball, on average.

In metrics for agility, effects of greater speed and
greater inaccuracy should be mapped to the net
effect on average “time to reach a given state”
and/or “volume of states reachable in some time”’.

(Analogies with balancing financial risk vs reward?
With information theory?) O\Uc SANTA BARBARA
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Current Agility Metrics?

Flight dynamics and human dynamics
seem to value twisting and turning...

Perhaps point-to-point mobility is more key,
with turning useful iff it enables that goal.
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Range of Locomotion Research

(more complex)

moveable terrain
+

sinkability

(e.g., mud, grass)

varying friction

+
3D obstacles
+

impulses
+

terrain height

(less complex)
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(static walking) (underactuated / dynamic)
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Range of Locomotion Research

(more complex)

moveable terrain
+

sinkability

(e.g., mud, grass)

varying friction

+
3D obstacles
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impulses
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Range of Locomotion Research

(more complex)

moveable terrain
+

sinkability

(e.g., mud, grass)

varying friction

+
3D obstacles
+

impulses
+

terrain height

(less complex)

A
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Our Locomotion Research

* Il wrap up by discussing our work,
(more complex) /\ e ..androbustness.
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Robustness
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Robustness: Rarely Failing

1. Achieve metastable locomotion

escape attempts

/tx

A B X

Metastable:
Not strictly stable, but exhibiting long-living
behaviors. (literally, “beyond stable”.)

Probabilistic framework. Want to discretize
things, to use machine learning.
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How to estimate MFPT???

- Start with the fixed point for a given
gait, on level ground.

- Create a mesh (deterministically) of
reachable (Poincare) states, i.e., of
snapshots at some point of the gait
cycle, given some range of variability
— e.g., terrain height.

- This can be done, because a gait
controller drives the dynamics to
low-dimensional manifolds within
the full state space.

- Build a transition matrix, which
describes the stochastic dynamics of
rough terrain walking.

- Asingle, absorbing failure state
capture all failure events.

O UC SANTA BARBARA
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Mean first-passage time (MFPT)

|
A system-wide metric M =~
(Based on 2"d-largest eigenvalue l — 12

of transition matrix.)
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Look-ahead: known variability

When the terrain is flat, controller 1 is
stable and the walking is periodic.

Step: 1
Controller: 1

flat terrain: stable

©\UC SANTA BARBARA
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Framework

State Having a robustness metric
enables OPTIMIZATION! (that is
pretty much the whole point...)

Torque

One can optimize:

 m— - High-level switching control

- Parameterizations of low-
level controllers

- Morphology of the robot

Slope

The high-level switching policy
will be globally optimal, while
other searches find locally
optimal solutions.

One can optimize for a metric
Low-Level considering MFPT and energy.

Controllers
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Eigenvalues: Discrete-time system

Im

/\ . /'LZ AZC\/G 1-Ao )@1

\J Metastable system is like a very

biased coin toss: Usually returns
to a metastable neighborhood,
with very rare failures.

Slow rate
(dominant)

Other “poles” are much faster... so
initial conditions are forgotten quickly.
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Example Benchmarking

Optimizing each of two low-level controller

Hybrid Zero Dynamics

Grizzle et al. (Umich)

Mean First Passage Time (MFPT) (steps)

1
CMFPT
——|
CBase

1
___CC’OT N

—_
o

—_
o

Sliding Mode Control*

—_
o
T

Saglam and Byl (UCSB)

—_
(é)]

1
CMFPT
. 1
CBase

1
- _CCOT

0.5 1 1.5 2 2.5
Terrain Roughness (04 (degrees)

Mean First Passage Time (MFPT) (steps)

1

’iw/ Piece-wise references |

(Understanding low-dim physics
is a great starting point...)

_____________________________

Terrain Roughness (05) (degrees)
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Mean First Passage Time (MFPT) (steps)

Example Benchmarking

Optimizing each of two low-level controller

Hybrid Zero Dynamics “Sliding Mode Control”
Grizzle et al. (Umich) Saglam and Byl (UCSB)
10"
_le\/IFPT
——Chue
-~ ~Gor

—
o
—
o
T

> 10,000

P

0.5 1 1.5 2 25 3 | 8 ol________ . T
Terrain Roughness (79 (degrees) 10 ) T

Mean First Passage Time (MFPT) (steps)

Teffain Roughness (05) (degrees)
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Goal is to control higher-DOF system

MuJoCo - Emo Todorov. (Thanks Emo!!) O\Uc SANTA BARBARA

oy

(Understanding low-dim physics is a great starting point...) \O Robotics Lab




Reachability
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Planar Hopper Model

Motivation: enable MPC (model predictive control), by
accurately steering toward desired next apex states.

* Spring-Loaded Inverted Pendulum (SLIP)

flight
~ ’
~ N stance o
\ /
/

”~

Passive vs Active
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dx

o oooNNd A

Reachable set ?

Next apex states:
dy/dt=0, leaving
X, y, and dx/dt.

Once touch-down
angle is set, reachable
states fora 2D set

. (approximately).

Spanning this region
requires 2 “knobs to
twiddle” in active
control during stance.
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Reachability of Control Laws

2 . . . . . .
Wanted:
{y, ©}—space. A Ability to reach a
1.8] large, open set
(e.g., not a "bow-
. tie”). Trade-offs in

computation time
VS. accuracy exist.

Y 144

1.2L

7 R,: Schmitt/Clark (2009)

R, : Piovan/Byl (2013)

PITTis T2 125 13 185 14 145 15 (B)s. UC SANTA BARBARA
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Computational Time Delay

* Let’s say we cannot act for the first dt, while initial
computations are done.

* Motivation: We are

2 | | | " IRy, 0t — 0.01
Eil Ry, 61 = 0.02
ER,
o i
14
D'81.1 1 I15 1.I2 1.I25 W.IE 1.I35 W.Ili 1.L15 15 UC SANTA BARBARA
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Computational Time Delay

* Let’s say we cannot act for the first dt, while initial
computations are done.

 Motivation: We are uncertain about terrain.

Our numeric approach (with
? I I I I Rtot} 5t :‘ 0.01 time dElay) iS in green-

] Ry0, 61 = 0.02 2

1 1 1 1 1 1 1
1k . _ . . . 125 13 135 14 145 15

01 O UC SANTA BARBARA
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Computational Time Delay

* Let’s say we cannot act for the first dt, while initial
computations are done.

 Motivation: We are uncertain about terrain.

Our numeric approach (with

2 | | | " IRy, 0t — 0.01 time delay) is in green.
FEE Ryor, 61 = 0.02 G
i i 18]
161 1.6
ey 141
. Tt
..... 1.27
121 n
il °4; (Reachability seems closely
related to “agility”...
D'E‘1.1 1.15 1.2 1.25 1.I3 1.35 1.4 1.45 15 See Slide 15 again.)
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Varying touchdown angle

 Reachable “volume”’

170
N
160
14 150
T o - 1140
S
1] - 1130
- 1120
N e . 110
1 S (Still a very sparse “volume”
0.5 0 that is reachable, even when

y [m] 0 A leg touch-down angle varies.)



"Hopper C” (Jason Cortell)
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Robustness and Agilitg. .
and the DRC?
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DARPA Robotics Challenge (DRC)

* Humanitarian Rescue, inspired by Fukushima

ﬁ ROBOTICS O\UC SANTA BARBARA
CHALLENGE g Robotics Lab



FOUR TRACKS i DRC

e REVIEW OF PROPOSALS (APR-OCT 2012)
4 > 7 Track A teams received $1.8M each initial DARPA funding
> 11 Track B teams received $375K each initial DARPA funding

VIRTUAL ROBOTICS CHALLENGE (MAY-JUN 2013)
> 115 Track C teams initially registered

> 10 Track B and 16 Track C teams qualified to compete

> 7 teams won DARPA funding and use of an Atlas robot

CRITICAL DESIGN REVIEW (JUN 2013)
> DARPA evaluated performance vs. proposed objectives
> 6 teams qualified for additional DARPA funding

SAFETY AND PERFORMANCE

QUALIFICATIONS (NOV 2013)
> 4 Track D teams qualified
> 17 teams in all will compete in the DRC Trials

DRC TRIALS (DEC 2013)

> Up to 8 top teams from Tracks A/B/C
will receive DARPA funding to
compete in 2014 DRC Finals

> Any team can register to compete in
DRC Finals with independent funding

oy
=%
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FOUR TRACKS it DRC

We started out on Track B... |

DARPA funding
> 11 Track B teams received $375K each initial DARPA funding

VIRTUAL ROBOTICS CHALLENGE (MAY-JUN 2013)
> 115 Track C teams initially registered

> 10 Track B and 16 Track C teams qualified to compete

> 7 teams won DARPA funding and use of an Atlas robot

CRITICAL DESIGN REVIEW (JUN 2013)
> DARPA evaluated performance vs. proposed objectives
> 6 teams qualified for additional DARPA funding

SAFETY AND PERFORMANCE

QUALIFICATIONS (NOV 2013)
> 4 Track D teams qualified
> 17 teams in all will compete in the DRC Trials

DRC TRIALS (DEC 2013)

> Up to 8 top teams from Tracks A/B/C
will receive DARPA funding to
compete in 2014 DRC Finals

> Any team can register to compete in
DRC Finals with independent funding
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FOUR TRACKS+ DRC

We started out on Track B...

12)

> 11 Track B teams received $375K each

DARPA funding
initial DARPA funding

VIRTUAL ROBOTICS CHALLENGE (MAY-JUN 2013)
> 115 Track C teams initially registered

> 10 Track B and 16 Track C teams qualified to compete

> 7 teams won DARPA funding and use of an Atlas robot

CRITICAL DESIGN REVIEW (JUN 2013)

> DARPA evaluated performance vs. proposed objectives
> 6 teams qualified for additional DARPA funding

SAFETY AND PERFORMANCE

QUALIFICATIONS (NOV 2013)
> 4 Track D teams qualified
> 17 teams in all will compete in the DRC Trials

DRC TRIALS (DEC 2013)

(Note how our trajectory
“optimally” hits all of DARPA’s [,
qualification roadblocks.)

... but are now working with
JPL’s RoboSimian quadruped.

#DARPADRC




RoboSimian

<SP0

Jet Propulsion Laboratory
California Institute of Technology
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Asides on DRC Status

* RoboSimian’s design is robust on variable terrain.
As for agility: dexterous 7-DOF limbs are slow.

 JPL’s approach/viewpoint (with DARPA)
* Not trying to “game things”
* Trying to keep “in the spirit DARPA intends”

* High robotics personnel turn-over lately...
* Google, Apple, etc. hiring a lot of roboticists lately

O UC SANTA BARBARA
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And a really quick update...




RoboSimian: Coping with Variability

End-on-contact limb trajectories; then replan.
Lot of pre-processing (e.g., kinematics):

- IK tables map 3-DOF location (x,y,z) of end effector
to 7-DOF joint solution.

- Solutions give efficient/fast motions.
- Designed for minimal collisions due to uncertainty.
Very strong hands are very useful (occasionally).

For very complex mobility, we’re NOT generalizing
“behaviors” —instead trying to demonstrate robot
capabilities.

O UC SANTA BARBARA
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R2T2, at UCSDH: ...and Down.
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IK Tables Alone — Fast Walk
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- More RoboSimian

ST,
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More Rabbit Agility
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Other metrics of interest

How do we quantify:
* Terrain challenge [ complexity ?
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