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Why Locomotion is Hard…


Stochastic	
  Environments	
  
variability	
  

[variability	
  doesn’t	
  necessarily	
  	
  
mean	
  uncertainty…]	
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Locomotion Goals


Robustness	
  
Agility	
  

Energetics	
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Robustness	
  
Agility	
  

Energetics	
  

unknown	
  variability	
  

as	
  efficient	
  as	
  practical	
  

known	
  variability	
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Locomotion metrics?


Robustness	
  
Agility	
  

Energetics	
  
(Easiest	
  to	
  quantify?)	
  

(Harder?)	
  

(Hardest?)	
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Energetics:	
  Cost	
  of	
  Transport	
  
A.D.	
  Kuo	
  	
  
Choosing	
  your	
  steps	
  carefully.	
  
IEEE	
  Robotics	
  and	
  Automation	
  Magazine.  
2007;14(2):18-­‐29.	
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BigDog   

NRI Hopper   

Low	
  is	
  good,	
  
energetically	
  

Agility	
  vs	
  Energetics	
  Trade-­‐off?	
  

Greater	
  
Agility?	
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Rabbit	
  Agility	
  

Danish Rabbit Hopping Championship, 2010 
https://www.youtube.com/watch?v=ptyKSiRyQ4Y 
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(Wait:	
  Did	
  she	
  throw	
  the	
  bunny?)	
  

Danish Rabbit Hopping Championship, 2010 
https://www.youtube.com/watch?v=ptyKSiRyQ4Y 
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Agility	
  and	
  Robustness,	
  Intuitively	
  

• One to many 
(can reach points in some open set) 

• Many to one 
(recover, to some tolerance) 

  (arriving at/within some Δt) 

Robustness	
  (?)	
  
	
  

[e.g.,	
  “funnels”…	
  Burridge, Rizzi, and Koditschek]	
  

Agility	
  (?)	
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Quantifying	
  Agility	
  

• Want	
  to:	
  quantify	
  the	
  set	
  of	
  states	
  
achievable	
  in	
  a	
  characteristic	
  time,	
  

• Penalized	
  by	
  inaccuracies.	
  

Coping	
  with	
  variable	
  terrain	
  is	
  a	
  challenge	
  –	
  
even	
  without	
  uncertainty*.	
  Errors	
  should	
  be	
  
quantifiable,	
  in	
  terms	
  of	
  their	
  impact.	
  
	
  

[*	
  e.g.,	
  DARPA	
  LittleDog	
  program]	
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Bang-­‐bang	
  control	
  analogy	
  
 

x ∝
1

2
at

2

v ∝ at

Reachable	
  area,	
  within	
  a	
  given	
  time,	
  	
  
is	
  proportional	
  to	
  a2.	
  	
  
(a=acceleration)	
  

Process	
  noise	
  would	
  increase	
  the	
  
expected	
  time	
  to	
  a	
  goal	
  state.	
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Rock	
  vs.	
  Cannonball	
  

Rock	
  never	
  moves.	
  	
  
Zero	
  agility,	
  since	
  reachable	
  set	
  has	
  zero	
  area.	
  

-­‐  Is	
  the	
  cannonball	
  better	
  or	
  worse?	
  
-­‐  What	
  if	
  the	
  reachable	
  set	
  is	
  also	
  just	
  a	
  	
  	
  	
  	
  

single	
  point?	
  (i.e.,	
  if	
  no	
  variability	
  in	
  
trajectory	
  can	
  be	
  commanded)	
  

-­‐  What	
  if	
  this	
  is	
  not	
  entirely	
  repeatable?	
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Golf	
  analogy	
  

Hitting	
  the	
  ball	
  further	
  can	
  reduce	
  the	
  
total	
  number	
  of	
  shots	
  required.	
  
	
  
But	
  bad	
  aim	
  on	
  a	
  long	
  shot	
  will	
  result	
  
in	
  a	
  greater	
  expected	
  number	
  of	
  total	
  	
  
swings	
  to	
  sink	
  the	
  ball,	
  on	
  average.	
  
	
  
	
  
	
  	
   In	
  metrics	
  for	
  agility,	
  effects	
  of	
  greater	
  speed	
  and	
  

greater	
  inaccuracy	
  should	
  be	
  mapped	
  to	
  the	
  net	
  
effect	
  on	
  average	
  “time	
  to	
  reach	
  a	
  given	
  state”	
  
and/or	
  “volume	
  of	
  states	
  reachable	
  in	
  some	
  time”.	
  
	
  
(Analogies	
  with	
  balancing	
  financial	
  risk	
  vs	
  reward?	
  	
  
With	
  information	
  theory?)	
  



Robotics Labc

Current	
  Agility	
  Metrics?	
  

Flight	
  dynamics	
  and	
  human	
  dynamics	
  	
  
seem	
  to	
  value	
  twisting	
  and	
  turning…	
  

	
  
	
  

Perhaps	
  point-­‐to-­‐point	
  mobility	
  is	
  more	
  key,	
  
with	
  turning	
  useful	
  iff	
  it	
  enables	
  that	
  goal.	
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(where	
  do	
  the	
  snakes	
  go	
  here??)	
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Range of Locomotion Research
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(where	
  do	
  the	
  snakes	
  go	
  here??)	
  

Russ’	
  thruster	
  analogy…more	
  intermittent	
  contact	
  to	
  the	
  right	
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Agility	
  implies	
  both	
  	
  
(1)	
  	
  “faster”	
  and	
  …	
  	
  



Robotics Labc
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Agility	
  implies	
  both	
  	
  
(1)	
  	
  “faster”	
  and	
  …	
  	
  

…	
  	
  (2)	
  more	
  capable	
  
of	
  diverse	
  motions.	
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•  Goal:	
  push	
  performance	
  limits	
  to	
  
“fill-­‐in”	
  the	
  chart.	
  

•  Note:	
  	
  reliability	
  gets	
  lower	
  (lighter	
  
shading	
  below)	
  near	
  the	
  limits.	
  

•  A	
  3rd	
  axis	
  could	
  also	
  represent	
  
“uncertainty”	
  of	
  sensing.	
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Our Locomotion Research
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•  I’ll	
  wrap	
  up	
  by	
  discussing	
  our	
  work,	
  
•  ..and	
  robustness.	
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Robustness	
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Robustness:	
  Rarely	
  Failing	
  

1.  Achieve	
  metastable	
  locomotion	
  

Metastable:	
  
Not	
  strictly	
  stable,	
  but	
  exhibiting	
  long-­‐living	
  
behaviors.	
  (literally,	
  “beyond	
  stable”.)	
  
	
  

Probabilistic	
  framework.	
  Want	
  to	
  discretize	
  
things,	
  to	
  use	
  machine	
  learning.	
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How	
  to	
  estimate	
  MFPT???	
  
-­‐  Start	
  with	
  the	
  fixed	
  point	
  for	
  a	
  given	
  

gait,	
  on	
  level	
  ground.	
  

-­‐  Create	
  a	
  mesh	
  (deterministically)	
  of	
  
reachable	
  (Poincare)	
  states,	
  i.e.,	
  of	
  
snapshots	
  at	
  some	
  point	
  of	
  the	
  gait	
  
cycle,	
  given	
  some	
  range	
  of	
  variability	
  
–	
  e.g.,	
  terrain	
  height.	
  

-­‐  This	
  can	
  be	
  done,	
  because	
  a	
  gait	
  
controller	
  drives	
  the	
  dynamics	
  to	
  
low-­‐dimensional	
  manifolds	
  within	
  
the	
  full	
  state	
  space.	
  

-­‐  Build	
  a	
  transition	
  matrix,	
  which	
  
describes	
  the	
  stochastic	
  dynamics	
  of	
  
rough	
  terrain	
  walking.	
  

-­‐  A	
  single,	
  absorbing	
  failure	
  state	
  
capture	
  all	
  failure	
  events.	
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Mean	
  first-­‐passage	
  time	
  (MFPT)	
  

A	
  system-­‐wide	
  metric	
  
(Based	
  on	
  2nd-­‐largest	
  eigenvalue	
  

	
  of	
  transition	
  matrix.)	
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Look-­‐ahead:	
  known	
  variability	
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Framework	
  
Having	
  a	
  robustness	
  metric	
  
enables	
  OPTIMIZATION!	
  (that	
  is	
  
pretty	
  much	
  the	
  whole	
  point…)	
  
	
  
One	
  can	
  optimize:	
  
-­‐  High-­‐level	
  switching	
  control	
  
-­‐  Parameterizations	
  of	
  low-­‐

level	
  controllers	
  
-­‐  Morphology	
  of	
  the	
  robot	
  

The	
  high-­‐level	
  switching	
  policy	
  
will	
  be	
  globally	
  optimal,	
  while	
  
other	
  searches	
  find	
  locally	
  
optimal	
  solutions.	
  
	
  
One	
  can	
  optimize	
  for	
  a	
  metric	
  
considering	
  MFPT	
  and	
  energy.	
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Eigenvalues:	
  Discrete-­‐time	
  system	
  

λ2

Other	
  “poles”	
  are	
  much	
  faster…	
  so	
  	
  
initial	
  conditions	
  are	
  forgotten	
  quickly.	
  

Slow	
  rate	
  
(dominant)	
  

1�2

1-�2

Metastable	
  system	
  is	
  like	
  a	
  very	
  
biased	
  coin	
  toss:	
  	
  Usually	
  returns	
  
to	
  a	
  metastable	
  neighborhood,	
  
with	
  very	
  rare	
  failures.	
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Example	
  Benchmarking	
  

Hybrid	
  Zero	
  Dynamics	
  

Grizzle	
  et	
  al.	
  (Umich)	
  
	
  
	
  

Sliding	
  Mode	
  Control*	
  

Saglam	
  and	
  Byl	
  (UCSB)	
  
	
  
	
  

	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  *w/	
  Piece-wise references	
  

Optimizing	
  each	
  of	
  two	
  low-­‐level	
  controller	
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Fig. 4. Average number of steps before falling calculated using (36) versus
�s for the second controller scheme. Slopes ahead of the robot are assumed
to be normally distributed with µs = 0. Note that range of �s is different
from Figure 3.

TABLE IV
ESTIMATION OF MFPT FOR SECOND CONTROLLER SCHEME WITH

µs = 0 AND �s = 2

⇣2Base ⇣2COT ⇣2MFPT

Estimation using (36) 2.2085 2.2049 5.5206
Monte Carlo Simulation 2.1511 2.2487 6.1290

suspect makes the optimization even more non-convex. This
might be the reason why many parameters of ⇣1Base and ⇣1MFPT
in Table I are very close. We suspect that we only find local
minimums. Indeed, starting with different initial conditions
yields different final gaits.

A major problem in the second controller scheme, we
believe, is the fact that reference is designed only for flat
terrain. For example, the controller does not really know what
to do after an impact does not occur at zero slope. This is
because Bézier polynomials are designed for 0  ⌧(q)  1,
and they quickly deviate outside this range. As a result, ⇣2Base
cannot take more than several steps on inclined terrain with a
slope of -1 degrees. We discovered an easy fix to the problem
by adopting the following policy: If ⌧(q) > 0.95, then do not
apply any torque. With this update, the controller can still
walk on flat terrain. In addition, it seems to be stable on -9
degree sloped terrain! However, we did not present the result
with this policy because it ends up with a low MFPT for
µ
s

= 0. The reason is, it works very badly on uphill slopes.

TABLE V
COMPARISON OF CONTROLLER SCHEMES FOR µs = 0 AND �s = 1

⇣1Base ⇣1COT ⇣1MFPT ⇣2Base ⇣2COT ⇣2MFPT

MFPT 3.2⇥105 2.2 1.6⇥1014 5.9 7.3 113.1

This shows the need for a better reference parametrization.

VII. CONCLUSIONS AND FUTURE WORK
In this work, we present a methodology for optimizing

a low-level control scheme and of bench-marking resulting
performance on rough terrain using the MFPT metric for
reliability. We apply the approach to two particular control
schemes as a motivating example; however, the approach
is designed as a means of providing a systematic means
of optimizing and bench-marking any of a wide variety of
control strategies, not only for walking systems but also for
other dynamic systems subject to stochastic environments,
more generally.

As mentioned in the previous section, we ended up with
a local minimum for the first controller scheme. We aim
finding the global solution in a future study. However, our
main intention is combining the two schemes by using a more
capable and continuous reference parameterization, e.g., B-
splines.

To build on this paper, we can also optimize under
constraints, e.g., for desired speed, step width, or ground
clearance. Furthermore, by designing multiple controllers
for different mean slopes, we can increase the stability
dramatically as illustrated in [5]. Finally, we may use costs
that incorporate other performance metrics also, similar
to [14]. For example, goal can be increasing stability while
decreasing energy consumption.
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Fig. 3. Average number of steps before falling calculated using (36) versus
�s for the first controller scheme. Slopes ahead of the robot are assumed
to be normally distributed with µs = 0.

We note that Monte Carlo simulations are not a com-
putationally practical means of verifying MFPT when it is
very high, which has motivated our methodology throughout.
However, we present a Monte Carlo study in Table II for
�
s

= 5, where MFPT is small. To obtain the second row
in this table, we simulated 10 thousand times. To allow the
robot to “forget” the initial condition, we omit the first step,
i.e., we only consider cases where it took more than a single
step and do not count that first step.

TABLE II
ESTIMATION OF MFPT FOR FIRST CONTROLLER SCHEME WITH µs = 0

AND �s = 5

⇣1Base ⇣1COT ⇣1MFPT

Estimation using (36) 5.1766 1.1470 10.6433

Monte Carlo Simulation 5.0738 1.5716 10.4813

2. Hybrid Zero Dynamics (HZD) using Proportional-
Derivative Control and Bézier Polynomials

For the HZD scheme, the base controller, ⇣2Base, is obtained
by fixing speed to be 0.8m/s and minimizing energy usage
as in [2]. We then remove the speed constraint and optimize
for Cost of Transport (COT) to obtain ⇣2COT. Both of these
controllers assume flat terrain, i.e., �

s

= 0. However,
[2] shows how to obtain the trajectories only, but not the
controller gains. So, we just picked K

P

= 100 and K
D

=
10, which works on flat terrain. To obtain ⇣2MFPT, we used
the “patternsearch” algorithm in MATLAB to optimize for
MFPT with �

s

= 1, d
s

= 0.5 and d
thr

= 0.3. Table III lists
the parameters for each controller.

We compare the stability of each controller versus the
roughness of the terrain in Figure 4. Again noting the
logarithmic y-axis, the suggested method provides a dramatic
increase in the stability, just like in Figure 3. As an interesting

TABLE III
PARAMETERS FOR THE SECOND CONTROLLER SCHEME IN RADIANS

⇣2Base ⇣2COT ⇣2MFPT

KP 100 100 169.2681

KD 10 10 30.0166

↵1
0 3.6151 3.6151 3.6037

↵1
1 3.6413 3.6475 3.5957

↵1
2 3.3894 3.4675 3.3948

↵1
3 3.2884 3.2884 3.2914

↵1
4 3.1135 3.1135 3.1136

↵1
5 3.1708 3.1708 3.1701

↵1
6 3.0349 3.0349 3.0448

↵2
0 3.0349 3.0349 3.0448

↵2
1 2.9006 2.9081 2.9259

↵2
2 2.9544 3.4544 3.0162

↵2
3 3.5470 3.0939 3.5302

↵2
4 3.5186 3.5186 3.5255

↵2
5 3.6851 3.6929 3.7298

↵2
6 3.6151 3.6151 3.6037

↵3
0 -0.4162 -0.3693 -0.4113

↵3
1 -0.6657 -0.6079 -0.6018

↵3
2 -0.3732 0.0124 -0.3126

↵3
3 -0.3728 -0.6501 -0.3444

↵3
4 -0.2359 -0.1880 -0.2366

↵3
5 -0.3780 -0.3819 -0.3478

↵3
6 -0.3200 -0.3141 -0.3221

↵4
0 -0.3200 -0.3141 -0.3221

↵4
1 -0.2484 -0.2285 -0.2856

↵4
2 -0.3690 -0.7323 -0.3664

↵4
3 -1.1041 -0.1932 -1.1005

↵4
4 -0.3973 -0.3817 -0.3834

↵4
5 -0.4260 -0.5139 -0.5082

↵4
6 -0.4162 -0.3693 -0.4113

side note, ⇣2MFPT has a lower COT than ⇣2Base. This is possible,
because there is no speed constraint for ⇣2MFPT.

Table IV presents the Monte Carlo study obtained assum-
ing �

s

= 2. Just like in Table II, we omit the first step to
allow robot ”forget” the initial condition.

3. Comparison
We first note that all six controllers are stable on flat

ground (�
s

= 0), because they all exhibit limit cycle. How-
ever, as Table V shows, there is a huge difference between
⇣1MFPT and any of the HZD controllers. So, we conclude that
the first controller scheme is much more capable in terms of
stability.

On the other hand, the first controller scheme has discon-
tinuities in the references, which may or may not become
a problem in a real experiment. Furthermore, the trajectory
highly depends on the controller parameters, which we

(Understanding	
  low-­‐dim	
  physics	
  
	
  is	
  a	
  great	
  starting	
  point...)	
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Fig. 4. Average number of steps before falling calculated using (36) versus
�s for the second controller scheme. Slopes ahead of the robot are assumed
to be normally distributed with µs = 0. Note that range of �s is different
from Figure 3.

TABLE IV
ESTIMATION OF MFPT FOR SECOND CONTROLLER SCHEME WITH

µs = 0 AND �s = 2

⇣2Base ⇣2COT ⇣2MFPT

Estimation using (36) 2.2085 2.2049 5.5206
Monte Carlo Simulation 2.1511 2.2487 6.1290

suspect makes the optimization even more non-convex. This
might be the reason why many parameters of ⇣1Base and ⇣1MFPT
in Table I are very close. We suspect that we only find local
minimums. Indeed, starting with different initial conditions
yields different final gaits.

A major problem in the second controller scheme, we
believe, is the fact that reference is designed only for flat
terrain. For example, the controller does not really know what
to do after an impact does not occur at zero slope. This is
because Bézier polynomials are designed for 0  ⌧(q)  1,
and they quickly deviate outside this range. As a result, ⇣2Base
cannot take more than several steps on inclined terrain with a
slope of -1 degrees. We discovered an easy fix to the problem
by adopting the following policy: If ⌧(q) > 0.95, then do not
apply any torque. With this update, the controller can still
walk on flat terrain. In addition, it seems to be stable on -9
degree sloped terrain! However, we did not present the result
with this policy because it ends up with a low MFPT for
µ
s

= 0. The reason is, it works very badly on uphill slopes.

TABLE V
COMPARISON OF CONTROLLER SCHEMES FOR µs = 0 AND �s = 1

⇣1Base ⇣1COT ⇣1MFPT ⇣2Base ⇣2COT ⇣2MFPT

MFPT 3.2⇥105 2.2 1.6⇥1014 5.9 7.3 113.1

This shows the need for a better reference parametrization.

VII. CONCLUSIONS AND FUTURE WORK
In this work, we present a methodology for optimizing

a low-level control scheme and of bench-marking resulting
performance on rough terrain using the MFPT metric for
reliability. We apply the approach to two particular control
schemes as a motivating example; however, the approach
is designed as a means of providing a systematic means
of optimizing and bench-marking any of a wide variety of
control strategies, not only for walking systems but also for
other dynamic systems subject to stochastic environments,
more generally.

As mentioned in the previous section, we ended up with
a local minimum for the first controller scheme. We aim
finding the global solution in a future study. However, our
main intention is combining the two schemes by using a more
capable and continuous reference parameterization, e.g., B-
splines.

To build on this paper, we can also optimize under
constraints, e.g., for desired speed, step width, or ground
clearance. Furthermore, by designing multiple controllers
for different mean slopes, we can increase the stability
dramatically as illustrated in [5]. Finally, we may use costs
that incorporate other performance metrics also, similar
to [14]. For example, goal can be increasing stability while
decreasing energy consumption.
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Fig. 3. Average number of steps before falling calculated using (36) versus
�s for the first controller scheme. Slopes ahead of the robot are assumed
to be normally distributed with µs = 0.

We note that Monte Carlo simulations are not a com-
putationally practical means of verifying MFPT when it is
very high, which has motivated our methodology throughout.
However, we present a Monte Carlo study in Table II for
�
s

= 5, where MFPT is small. To obtain the second row
in this table, we simulated 10 thousand times. To allow the
robot to “forget” the initial condition, we omit the first step,
i.e., we only consider cases where it took more than a single
step and do not count that first step.

TABLE II
ESTIMATION OF MFPT FOR FIRST CONTROLLER SCHEME WITH µs = 0

AND �s = 5

⇣1Base ⇣1COT ⇣1MFPT

Estimation using (36) 5.1766 1.1470 10.6433

Monte Carlo Simulation 5.0738 1.5716 10.4813

2. Hybrid Zero Dynamics (HZD) using Proportional-
Derivative Control and Bézier Polynomials

For the HZD scheme, the base controller, ⇣2Base, is obtained
by fixing speed to be 0.8m/s and minimizing energy usage
as in [2]. We then remove the speed constraint and optimize
for Cost of Transport (COT) to obtain ⇣2COT. Both of these
controllers assume flat terrain, i.e., �

s

= 0. However,
[2] shows how to obtain the trajectories only, but not the
controller gains. So, we just picked K

P

= 100 and K
D

=
10, which works on flat terrain. To obtain ⇣2MFPT, we used
the “patternsearch” algorithm in MATLAB to optimize for
MFPT with �

s

= 1, d
s

= 0.5 and d
thr

= 0.3. Table III lists
the parameters for each controller.

We compare the stability of each controller versus the
roughness of the terrain in Figure 4. Again noting the
logarithmic y-axis, the suggested method provides a dramatic
increase in the stability, just like in Figure 3. As an interesting

TABLE III
PARAMETERS FOR THE SECOND CONTROLLER SCHEME IN RADIANS

⇣2Base ⇣2COT ⇣2MFPT

KP 100 100 169.2681

KD 10 10 30.0166

↵1
0 3.6151 3.6151 3.6037

↵1
1 3.6413 3.6475 3.5957

↵1
2 3.3894 3.4675 3.3948

↵1
3 3.2884 3.2884 3.2914

↵1
4 3.1135 3.1135 3.1136

↵1
5 3.1708 3.1708 3.1701

↵1
6 3.0349 3.0349 3.0448

↵2
0 3.0349 3.0349 3.0448

↵2
1 2.9006 2.9081 2.9259

↵2
2 2.9544 3.4544 3.0162

↵2
3 3.5470 3.0939 3.5302

↵2
4 3.5186 3.5186 3.5255

↵2
5 3.6851 3.6929 3.7298

↵2
6 3.6151 3.6151 3.6037

↵3
0 -0.4162 -0.3693 -0.4113

↵3
1 -0.6657 -0.6079 -0.6018

↵3
2 -0.3732 0.0124 -0.3126

↵3
3 -0.3728 -0.6501 -0.3444

↵3
4 -0.2359 -0.1880 -0.2366

↵3
5 -0.3780 -0.3819 -0.3478

↵3
6 -0.3200 -0.3141 -0.3221

↵4
0 -0.3200 -0.3141 -0.3221

↵4
1 -0.2484 -0.2285 -0.2856

↵4
2 -0.3690 -0.7323 -0.3664

↵4
3 -1.1041 -0.1932 -1.1005

↵4
4 -0.3973 -0.3817 -0.3834

↵4
5 -0.4260 -0.5139 -0.5082

↵4
6 -0.4162 -0.3693 -0.4113

side note, ⇣2MFPT has a lower COT than ⇣2Base. This is possible,
because there is no speed constraint for ⇣2MFPT.

Table IV presents the Monte Carlo study obtained assum-
ing �

s

= 2. Just like in Table II, we omit the first step to
allow robot ”forget” the initial condition.

3. Comparison
We first note that all six controllers are stable on flat

ground (�
s

= 0), because they all exhibit limit cycle. How-
ever, as Table V shows, there is a huge difference between
⇣1MFPT and any of the HZD controllers. So, we conclude that
the first controller scheme is much more capable in terms of
stability.

On the other hand, the first controller scheme has discon-
tinuities in the references, which may or may not become
a problem in a real experiment. Furthermore, the trajectory
highly depends on the controller parameters, which we
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piston-like linear actuator, !act, placed in series with
the spring, as shown in Fig. 2. !act,0 defines the
initial/equilibrium value of the actuator. During
flight, any movement of the actuator does not have
an effect on the system’s dynamics, while during
the stance phase, the actuator can either compress
(!act > !act,0) or extend (!act < !act,0) the spring,
thus respectively adding or removing energy to/from
the system. The dynamics of the leg length during
stance phase, (1), become:

!̈ = −γ(!k − !k,0 − !act)− sin θ + !θ̇2.

At touch-down and take-off, the spring is at its
equilibrium position, !k,0. In the passive SLIP model,
this corresponds to the leg being at its neutral length,
!TD = !TO = !0. For the active SLIP model, instead,
this corresponds to !TD = !0, but !TO = !0+ !act,TO,
where !act,TO is the value of the actuator at take-
off. This means that the leg length at take-off is not
constant, but it is a function of the actuator’s length.

!k

!act !

Figure 2: Schematics of the active SLIP model.

Displacing the actuator during the stance phase
affects all three dimensions of the next apex state
reached. However, any actuation strategy applied to
its motion can only control two of the three dimen-
sions. For this reason, in this paper we choose to
consider the apex height and forward velocity only,
disregarding the forward position x, which is useful
mostly in path planning scenarios. Hence, we will
define the reduced apex state as S = {y, ẋ}. Let us
then define the following function, X , as the transi-
tion from one apex to the next:

X (S0, θTD, !act(t)) = S1,

where S1 is the apex state reached in one jump
from the initial apex state S0, with touch-down angle
θTD and actuator value function during stance phase
!act(t).

3 Reachability

In this section, we want to answer the following ques-
tion: starting from an initial apex state, to which
other apex states is it possible to drive the system,
when moving the actuator during the stance phase?

3.1 Reachable space

Starting from an initial apex state S0 = {ya, ẋa},
we call the reachable space of S0 the set of all apex
states that can be reached from S0 in one jump by
positioning the leg and moving the actuator:

R(S0) := {S1 | ∃ θTD, !a(t) : X (S0, θTD, !a(t)) = S1},

where θTD ∈ [π/2, π], and !act(t) is a continuous
function bounded by the physical limitations of the
actuator: !a(t) ∈ [!a,min, !a,max], ∀t ≥ 0.
In this work, we are interested in determining the

effect that the actuator’s displacement has on the
reachable space. Our study does not aim to propose a
leg-placement strategy, but rather to understand the
effect that the actuation has during the stance phase.
Therefore, we limit our analysis to a reduced reach-
able space, restricted to the case where the touch-
down angle, θTD, is fixed:

R(S0, θTD) := {S1 | ∃ !a(t) : X (S0, θTD, !a(t)) = S1}.

Obviously, R(S0, θTD) ⊆ R(S0).
For the passive SLIP model, the reachable space is

a point in the {y, ẋ}−space. Adding the series actua-
tor has the effect of extending the reachable set to a 2-
d surface, whose shape is determined by the ”shape”
of the function !act(t) during the stance phase. Var-
ious leg-actuation functions have been proposed and
can be found in the literature. We want here to com-
pare their reachability, to determine the best course
of action when choosing an actuation strategy.

Wanted: 
Ability to reach a 
large, open set 
(e.g., not a “bow-
tie”). Trade-offs in 
computation time 
vs. accuracy exist. 
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  approach	
  (with	
  
time	
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  to	
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See	
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  15	
  again.)	
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ẋ [m/s]y [m]
 

x
[m

]

90

100

110

120

130

140

150

160

170
• Reachable	
  “volume” 

 
 

(Still	
  a	
  very	
  sparse	
  “volume”	
  
that	
  is	
  reachable,	
  even	
  when	
  
leg	
  touch-­‐down	
  angle	
  varies.)	
  



Robotics Labc

“Hopper C” (Jason Cortell) 



Robotics Labc



Robotics Labc

Robustness and Agility…�
 and the DRC? 



Robotics Labc

DARPA	
  Robotics	
  Challenge	
  (DRC)	
  
•  Humanitarian	
  Rescue,	
  inspired	
  by	
  Fukushima	
  



Robotics Labc

Introduction




Robotics Labc

Introduction




Robotics Labc

Introduction

We	
  started	
  out	
  on	
  Track	
  B…	
  



Robotics Labc

Introduction

We	
  started	
  out	
  on	
  Track	
  B…	
  

…but	
  are	
  now	
  working	
  with	
  
JPL’s	
  RoboSimian	
  quadruped.	
  	
  

(Note	
  how	
  our	
  trajectory	
  
“optimally”	
  hits	
  all	
  of	
  DARPA’s	
  

qualification	
  roadblocks.)	
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Asides on DRC Status


• RoboSimian’s	
  design	
  is	
  robust	
  on	
  variable	
  terrain.	
  
As	
  for	
  agility:	
  dexterous	
  7-­‐DOF	
  limbs	
  are	
  slow.	
  

•  JPL’s	
  approach/viewpoint	
  (with	
  DARPA)	
  
• Not	
  trying	
  to	
  “game	
  things”	
  
• Trying	
  to	
  keep	
  “in	
  the	
  spirit	
  DARPA	
  intends”	
  

• High	
  robotics	
  personnel	
  turn-­‐over	
  lately…	
  
• Google,	
  Apple,	
  etc.	
  hiring	
  a	
  lot	
  of	
  roboticists	
  lately	
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RoboSimian:	
  Coping	
  with	
  Variability	
  

•  End-­‐on-­‐contact	
  limb	
  trajectories;	
  then	
  replan.	
  
•  Lot	
  of	
  pre-­‐processing	
  (e.g.,	
  kinematics):	
  

	
  -­‐	
  IK	
  tables	
  map	
  3-­‐DOF	
  location	
  (x,y,z)	
  of	
  end	
  effector	
  	
  
	
  	
  	
  to	
  7-­‐DOF	
  joint	
  solution.	
  
	
  -­‐	
  Solutions	
  give	
  efficient/fast	
  motions.	
  
	
  -­‐	
  Designed	
  for	
  minimal	
  collisions	
  due	
  to	
  uncertainty.	
  

•  Very	
  strong	
  hands	
  are	
  very	
  useful	
  (occasionally).	
  
•  For	
  very	
  complex	
  mobility,	
  we’re	
  NOT	
  generalizing	
  	
  

“behaviors”	
  –	
  instead	
  trying	
  to	
  demonstrate	
  robot	
  
capabilities.	
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R2T2, at UCSB: …and Down.


7x true speed. 
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