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Why Locomotion is Hard…

Stochastic	  Environments	  
variability	  

[variability	  doesn’t	  necessarily	  	  
mean	  uncertainty…]	  
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Robustness	  
Agility	  

Energetics	  
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Robustness	  
Agility	  

Energetics	  

unknown	  variability	  

as	  efficient	  as	  practical	  

known	  variability	  
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Locomotion metrics?

Robustness	  
Agility	  

Energetics	  
(Easiest	  to	  quantify?)	  

(Harder?)	  

(Hardest?)	  
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Energetics:	  Cost	  of	  Transport	  
A.D.	  Kuo	  	  
Choosing	  your	  steps	  carefully.	  
IEEE	  Robotics	  and	  Automation	  Magazine.  
2007;14(2):18-‐29.	  	  
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BigDog   

NRI Hopper   

Low	  is	  good,	  
energetically	  

Agility	  vs	  Energetics	  Trade-‐off?	  

Greater	  
Agility?	  
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Rabbit	  Agility	  

Danish Rabbit Hopping Championship, 2010 
https://www.youtube.com/watch?v=ptyKSiRyQ4Y 
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(Wait:	  Did	  she	  throw	  the	  bunny?)	  

Danish Rabbit Hopping Championship, 2010 
https://www.youtube.com/watch?v=ptyKSiRyQ4Y 
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Agility	  and	  Robustness,	  Intuitively	  

• One to many 
(can reach points in some open set) 

• Many to one 
(recover, to some tolerance) 

  (arriving at/within some Δt) 

Robustness	  (?)	  
	  

[e.g.,	  “funnels”…	  Burridge, Rizzi, and Koditschek]	  

Agility	  (?)	  
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Quantifying	  Agility	  

• Want	  to:	  quantify	  the	  set	  of	  states	  
achievable	  in	  a	  characteristic	  time,	  

• Penalized	  by	  inaccuracies.	  

Coping	  with	  variable	  terrain	  is	  a	  challenge	  –	  
even	  without	  uncertainty*.	  Errors	  should	  be	  
quantifiable,	  in	  terms	  of	  their	  impact.	  
	  

[*	  e.g.,	  DARPA	  LittleDog	  program]	  
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Bang-‐bang	  control	  analogy	  
 

x ∝
1

2
at

2

v ∝ at

Reachable	  area,	  within	  a	  given	  time,	  	  
is	  proportional	  to	  a2.	  	  
(a=acceleration)	  

Process	  noise	  would	  increase	  the	  
expected	  time	  to	  a	  goal	  state.	  
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Rock	  vs.	  Cannonball	  

Rock	  never	  moves.	  	  
Zero	  agility,	  since	  reachable	  set	  has	  zero	  area.	  

-‐  Is	  the	  cannonball	  better	  or	  worse?	  
-‐  What	  if	  the	  reachable	  set	  is	  also	  just	  a	  	  	  	  	  

single	  point?	  (i.e.,	  if	  no	  variability	  in	  
trajectory	  can	  be	  commanded)	  

-‐  What	  if	  this	  is	  not	  entirely	  repeatable?	  



Robotics Labc

Golf	  analogy	  

Hitting	  the	  ball	  further	  can	  reduce	  the	  
total	  number	  of	  shots	  required.	  
	  
But	  bad	  aim	  on	  a	  long	  shot	  will	  result	  
in	  a	  greater	  expected	  number	  of	  total	  	  
swings	  to	  sink	  the	  ball,	  on	  average.	  
	  
	  
	  	   In	  metrics	  for	  agility,	  effects	  of	  greater	  speed	  and	  

greater	  inaccuracy	  should	  be	  mapped	  to	  the	  net	  
effect	  on	  average	  “time	  to	  reach	  a	  given	  state”	  
and/or	  “volume	  of	  states	  reachable	  in	  some	  time”.	  
	  
(Analogies	  with	  balancing	  financial	  risk	  vs	  reward?	  	  
With	  information	  theory?)	  
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Current	  Agility	  Metrics?	  

Flight	  dynamics	  and	  human	  dynamics	  	  
seem	  to	  value	  twisting	  and	  turning…	  

	  
	  

Perhaps	  point-‐to-‐point	  mobility	  is	  more	  key,	  
with	  turning	  useful	  iff	  it	  enables	  that	  goal.	  



Robotics Labc

Range of Locomotion Research

slower
(static walking)

faster
(underactuated / dynamic)

more "agile"
Te

rra
in

 V
ar

ia
bi

lit
y

terrain height

(less complex)

(more complex)

impulses
3D obstacles

varying friction

sinkability
(e.g., mud, grass)

moveable terrain

+

+

+
+

+

R
ob

oS
im

ia
n 

(D
R

C
)

H
um

an
oi

ds

Po
in

t−
fo

ot
 w

al
ke

rs

H
op

pe
rs



Robotics Labc

Range of Locomotion Research

slower
(static walking)

faster
(underactuated / dynamic)

more "agile"
Te

rra
in

 V
ar

ia
bi

lit
y

terrain height

(less complex)

(more complex)

impulses
3D obstacles

varying friction

sinkability
(e.g., mud, grass)

moveable terrain

+

+

+
+

+

R
ob

oS
im

ia
n 

(D
R

C
)

H
um

an
oi

ds

Po
in

t−
fo

ot
 w

al
ke

rs

H
op

pe
rs

(where	  do	  the	  snakes	  go	  here??)	  
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Range of Locomotion Research
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(where	  do	  the	  snakes	  go	  here??)	  

Russ’	  thruster	  analogy…more	  intermittent	  contact	  to	  the	  right	  	  
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Agility	  implies	  both	  	  
(1)	  	  “faster”	  and	  …	  	  
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Agility	  implies	  both	  	  
(1)	  	  “faster”	  and	  …	  	  

…	  	  (2)	  more	  capable	  
of	  diverse	  motions.	  
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•  Goal:	  push	  performance	  limits	  to	  
“fill-‐in”	  the	  chart.	  

•  Note:	  	  reliability	  gets	  lower	  (lighter	  
shading	  below)	  near	  the	  limits.	  

•  A	  3rd	  axis	  could	  also	  represent	  
“uncertainty”	  of	  sensing.	  
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Our Locomotion Research
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•  I’ll	  wrap	  up	  by	  discussing	  our	  work,	  
•  ..and	  robustness.	  
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Robustness	  
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Robustness:	  Rarely	  Failing	  

1.  Achieve	  metastable	  locomotion	  

Metastable:	  
Not	  strictly	  stable,	  but	  exhibiting	  long-‐living	  
behaviors.	  (literally,	  “beyond	  stable”.)	  
	  

Probabilistic	  framework.	  Want	  to	  discretize	  
things,	  to	  use	  machine	  learning.	  
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How	  to	  estimate	  MFPT???	  
-‐  Start	  with	  the	  fixed	  point	  for	  a	  given	  

gait,	  on	  level	  ground.	  

-‐  Create	  a	  mesh	  (deterministically)	  of	  
reachable	  (Poincare)	  states,	  i.e.,	  of	  
snapshots	  at	  some	  point	  of	  the	  gait	  
cycle,	  given	  some	  range	  of	  variability	  
–	  e.g.,	  terrain	  height.	  

-‐  This	  can	  be	  done,	  because	  a	  gait	  
controller	  drives	  the	  dynamics	  to	  
low-‐dimensional	  manifolds	  within	  
the	  full	  state	  space.	  

-‐  Build	  a	  transition	  matrix,	  which	  
describes	  the	  stochastic	  dynamics	  of	  
rough	  terrain	  walking.	  

-‐  A	  single,	  absorbing	  failure	  state	  
capture	  all	  failure	  events.	  
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Mean	  first-‐passage	  time	  (MFPT)	  

A	  system-‐wide	  metric	  
(Based	  on	  2nd-‐largest	  eigenvalue	  

	  of	  transition	  matrix.)	  
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Look-‐ahead:	  known	  variability	  
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Framework	  
Having	  a	  robustness	  metric	  
enables	  OPTIMIZATION!	  (that	  is	  
pretty	  much	  the	  whole	  point…)	  
	  
One	  can	  optimize:	  
-‐  High-‐level	  switching	  control	  
-‐  Parameterizations	  of	  low-‐

level	  controllers	  
-‐  Morphology	  of	  the	  robot	  

The	  high-‐level	  switching	  policy	  
will	  be	  globally	  optimal,	  while	  
other	  searches	  find	  locally	  
optimal	  solutions.	  
	  
One	  can	  optimize	  for	  a	  metric	  
considering	  MFPT	  and	  energy.	  
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Eigenvalues:	  Discrete-‐time	  system	  

λ2

Other	  “poles”	  are	  much	  faster…	  so	  	  
initial	  conditions	  are	  forgotten	  quickly.	  

Slow	  rate	  
(dominant)	  

1�2

1-�2

Metastable	  system	  is	  like	  a	  very	  
biased	  coin	  toss:	  	  Usually	  returns	  
to	  a	  metastable	  neighborhood,	  
with	  very	  rare	  failures.	  
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Example	  Benchmarking	  

Hybrid	  Zero	  Dynamics	  

Grizzle	  et	  al.	  (Umich)	  
	  
	  

Sliding	  Mode	  Control*	  

Saglam	  and	  Byl	  (UCSB)	  
	  
	  

	  
	  	  	  	  	  	  	  	  	  	  	  	  *w/	  Piece-wise references	  

Optimizing	  each	  of	  two	  low-‐level	  controller	  
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Fig. 4. Average number of steps before falling calculated using (36) versus
�s for the second controller scheme. Slopes ahead of the robot are assumed
to be normally distributed with µs = 0. Note that range of �s is different
from Figure 3.

TABLE IV
ESTIMATION OF MFPT FOR SECOND CONTROLLER SCHEME WITH

µs = 0 AND �s = 2

⇣2Base ⇣2COT ⇣2MFPT

Estimation using (36) 2.2085 2.2049 5.5206
Monte Carlo Simulation 2.1511 2.2487 6.1290

suspect makes the optimization even more non-convex. This
might be the reason why many parameters of ⇣1Base and ⇣1MFPT
in Table I are very close. We suspect that we only find local
minimums. Indeed, starting with different initial conditions
yields different final gaits.

A major problem in the second controller scheme, we
believe, is the fact that reference is designed only for flat
terrain. For example, the controller does not really know what
to do after an impact does not occur at zero slope. This is
because Bézier polynomials are designed for 0  ⌧(q)  1,
and they quickly deviate outside this range. As a result, ⇣2Base
cannot take more than several steps on inclined terrain with a
slope of -1 degrees. We discovered an easy fix to the problem
by adopting the following policy: If ⌧(q) > 0.95, then do not
apply any torque. With this update, the controller can still
walk on flat terrain. In addition, it seems to be stable on -9
degree sloped terrain! However, we did not present the result
with this policy because it ends up with a low MFPT for
µ
s

= 0. The reason is, it works very badly on uphill slopes.

TABLE V
COMPARISON OF CONTROLLER SCHEMES FOR µs = 0 AND �s = 1

⇣1Base ⇣1COT ⇣1MFPT ⇣2Base ⇣2COT ⇣2MFPT

MFPT 3.2⇥105 2.2 1.6⇥1014 5.9 7.3 113.1

This shows the need for a better reference parametrization.

VII. CONCLUSIONS AND FUTURE WORK
In this work, we present a methodology for optimizing

a low-level control scheme and of bench-marking resulting
performance on rough terrain using the MFPT metric for
reliability. We apply the approach to two particular control
schemes as a motivating example; however, the approach
is designed as a means of providing a systematic means
of optimizing and bench-marking any of a wide variety of
control strategies, not only for walking systems but also for
other dynamic systems subject to stochastic environments,
more generally.

As mentioned in the previous section, we ended up with
a local minimum for the first controller scheme. We aim
finding the global solution in a future study. However, our
main intention is combining the two schemes by using a more
capable and continuous reference parameterization, e.g., B-
splines.

To build on this paper, we can also optimize under
constraints, e.g., for desired speed, step width, or ground
clearance. Furthermore, by designing multiple controllers
for different mean slopes, we can increase the stability
dramatically as illustrated in [5]. Finally, we may use costs
that incorporate other performance metrics also, similar
to [14]. For example, goal can be increasing stability while
decreasing energy consumption.
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Fig. 3. Average number of steps before falling calculated using (36) versus
�s for the first controller scheme. Slopes ahead of the robot are assumed
to be normally distributed with µs = 0.

We note that Monte Carlo simulations are not a com-
putationally practical means of verifying MFPT when it is
very high, which has motivated our methodology throughout.
However, we present a Monte Carlo study in Table II for
�
s

= 5, where MFPT is small. To obtain the second row
in this table, we simulated 10 thousand times. To allow the
robot to “forget” the initial condition, we omit the first step,
i.e., we only consider cases where it took more than a single
step and do not count that first step.

TABLE II
ESTIMATION OF MFPT FOR FIRST CONTROLLER SCHEME WITH µs = 0

AND �s = 5

⇣1Base ⇣1COT ⇣1MFPT

Estimation using (36) 5.1766 1.1470 10.6433

Monte Carlo Simulation 5.0738 1.5716 10.4813

2. Hybrid Zero Dynamics (HZD) using Proportional-
Derivative Control and Bézier Polynomials

For the HZD scheme, the base controller, ⇣2Base, is obtained
by fixing speed to be 0.8m/s and minimizing energy usage
as in [2]. We then remove the speed constraint and optimize
for Cost of Transport (COT) to obtain ⇣2COT. Both of these
controllers assume flat terrain, i.e., �

s

= 0. However,
[2] shows how to obtain the trajectories only, but not the
controller gains. So, we just picked K

P

= 100 and K
D

=
10, which works on flat terrain. To obtain ⇣2MFPT, we used
the “patternsearch” algorithm in MATLAB to optimize for
MFPT with �

s

= 1, d
s

= 0.5 and d
thr

= 0.3. Table III lists
the parameters for each controller.

We compare the stability of each controller versus the
roughness of the terrain in Figure 4. Again noting the
logarithmic y-axis, the suggested method provides a dramatic
increase in the stability, just like in Figure 3. As an interesting

TABLE III
PARAMETERS FOR THE SECOND CONTROLLER SCHEME IN RADIANS

⇣2Base ⇣2COT ⇣2MFPT

KP 100 100 169.2681

KD 10 10 30.0166

↵1
0 3.6151 3.6151 3.6037

↵1
1 3.6413 3.6475 3.5957

↵1
2 3.3894 3.4675 3.3948

↵1
3 3.2884 3.2884 3.2914

↵1
4 3.1135 3.1135 3.1136

↵1
5 3.1708 3.1708 3.1701

↵1
6 3.0349 3.0349 3.0448

↵2
0 3.0349 3.0349 3.0448

↵2
1 2.9006 2.9081 2.9259

↵2
2 2.9544 3.4544 3.0162

↵2
3 3.5470 3.0939 3.5302

↵2
4 3.5186 3.5186 3.5255

↵2
5 3.6851 3.6929 3.7298

↵2
6 3.6151 3.6151 3.6037

↵3
0 -0.4162 -0.3693 -0.4113

↵3
1 -0.6657 -0.6079 -0.6018

↵3
2 -0.3732 0.0124 -0.3126

↵3
3 -0.3728 -0.6501 -0.3444

↵3
4 -0.2359 -0.1880 -0.2366

↵3
5 -0.3780 -0.3819 -0.3478

↵3
6 -0.3200 -0.3141 -0.3221

↵4
0 -0.3200 -0.3141 -0.3221

↵4
1 -0.2484 -0.2285 -0.2856

↵4
2 -0.3690 -0.7323 -0.3664

↵4
3 -1.1041 -0.1932 -1.1005

↵4
4 -0.3973 -0.3817 -0.3834

↵4
5 -0.4260 -0.5139 -0.5082

↵4
6 -0.4162 -0.3693 -0.4113

side note, ⇣2MFPT has a lower COT than ⇣2Base. This is possible,
because there is no speed constraint for ⇣2MFPT.

Table IV presents the Monte Carlo study obtained assum-
ing �

s

= 2. Just like in Table II, we omit the first step to
allow robot ”forget” the initial condition.

3. Comparison
We first note that all six controllers are stable on flat

ground (�
s

= 0), because they all exhibit limit cycle. How-
ever, as Table V shows, there is a huge difference between
⇣1MFPT and any of the HZD controllers. So, we conclude that
the first controller scheme is much more capable in terms of
stability.

On the other hand, the first controller scheme has discon-
tinuities in the references, which may or may not become
a problem in a real experiment. Furthermore, the trajectory
highly depends on the controller parameters, which we

(Understanding	  low-‐dim	  physics	  
	  is	  a	  great	  starting	  point...)	  
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Example	  Benchmarking	  

Hybrid	  Zero	  Dynamics	  

Grizzle	  et	  al.	  (Umich)	  
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“Sliding	  Mode	  Control”	  

Saglam	  and	  Byl	  (UCSB)	  
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Optimizing	  each	  of	  two	  low-‐level	  controller	  
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Fig. 4. Average number of steps before falling calculated using (36) versus
�s for the second controller scheme. Slopes ahead of the robot are assumed
to be normally distributed with µs = 0. Note that range of �s is different
from Figure 3.

TABLE IV
ESTIMATION OF MFPT FOR SECOND CONTROLLER SCHEME WITH

µs = 0 AND �s = 2

⇣2Base ⇣2COT ⇣2MFPT

Estimation using (36) 2.2085 2.2049 5.5206
Monte Carlo Simulation 2.1511 2.2487 6.1290

suspect makes the optimization even more non-convex. This
might be the reason why many parameters of ⇣1Base and ⇣1MFPT
in Table I are very close. We suspect that we only find local
minimums. Indeed, starting with different initial conditions
yields different final gaits.

A major problem in the second controller scheme, we
believe, is the fact that reference is designed only for flat
terrain. For example, the controller does not really know what
to do after an impact does not occur at zero slope. This is
because Bézier polynomials are designed for 0  ⌧(q)  1,
and they quickly deviate outside this range. As a result, ⇣2Base
cannot take more than several steps on inclined terrain with a
slope of -1 degrees. We discovered an easy fix to the problem
by adopting the following policy: If ⌧(q) > 0.95, then do not
apply any torque. With this update, the controller can still
walk on flat terrain. In addition, it seems to be stable on -9
degree sloped terrain! However, we did not present the result
with this policy because it ends up with a low MFPT for
µ
s

= 0. The reason is, it works very badly on uphill slopes.

TABLE V
COMPARISON OF CONTROLLER SCHEMES FOR µs = 0 AND �s = 1

⇣1Base ⇣1COT ⇣1MFPT ⇣2Base ⇣2COT ⇣2MFPT

MFPT 3.2⇥105 2.2 1.6⇥1014 5.9 7.3 113.1

This shows the need for a better reference parametrization.

VII. CONCLUSIONS AND FUTURE WORK
In this work, we present a methodology for optimizing

a low-level control scheme and of bench-marking resulting
performance on rough terrain using the MFPT metric for
reliability. We apply the approach to two particular control
schemes as a motivating example; however, the approach
is designed as a means of providing a systematic means
of optimizing and bench-marking any of a wide variety of
control strategies, not only for walking systems but also for
other dynamic systems subject to stochastic environments,
more generally.

As mentioned in the previous section, we ended up with
a local minimum for the first controller scheme. We aim
finding the global solution in a future study. However, our
main intention is combining the two schemes by using a more
capable and continuous reference parameterization, e.g., B-
splines.

To build on this paper, we can also optimize under
constraints, e.g., for desired speed, step width, or ground
clearance. Furthermore, by designing multiple controllers
for different mean slopes, we can increase the stability
dramatically as illustrated in [5]. Finally, we may use costs
that incorporate other performance metrics also, similar
to [14]. For example, goal can be increasing stability while
decreasing energy consumption.
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Fig. 3. Average number of steps before falling calculated using (36) versus
�s for the first controller scheme. Slopes ahead of the robot are assumed
to be normally distributed with µs = 0.

We note that Monte Carlo simulations are not a com-
putationally practical means of verifying MFPT when it is
very high, which has motivated our methodology throughout.
However, we present a Monte Carlo study in Table II for
�
s

= 5, where MFPT is small. To obtain the second row
in this table, we simulated 10 thousand times. To allow the
robot to “forget” the initial condition, we omit the first step,
i.e., we only consider cases where it took more than a single
step and do not count that first step.

TABLE II
ESTIMATION OF MFPT FOR FIRST CONTROLLER SCHEME WITH µs = 0

AND �s = 5

⇣1Base ⇣1COT ⇣1MFPT

Estimation using (36) 5.1766 1.1470 10.6433

Monte Carlo Simulation 5.0738 1.5716 10.4813

2. Hybrid Zero Dynamics (HZD) using Proportional-
Derivative Control and Bézier Polynomials

For the HZD scheme, the base controller, ⇣2Base, is obtained
by fixing speed to be 0.8m/s and minimizing energy usage
as in [2]. We then remove the speed constraint and optimize
for Cost of Transport (COT) to obtain ⇣2COT. Both of these
controllers assume flat terrain, i.e., �

s

= 0. However,
[2] shows how to obtain the trajectories only, but not the
controller gains. So, we just picked K

P

= 100 and K
D

=
10, which works on flat terrain. To obtain ⇣2MFPT, we used
the “patternsearch” algorithm in MATLAB to optimize for
MFPT with �

s

= 1, d
s

= 0.5 and d
thr

= 0.3. Table III lists
the parameters for each controller.

We compare the stability of each controller versus the
roughness of the terrain in Figure 4. Again noting the
logarithmic y-axis, the suggested method provides a dramatic
increase in the stability, just like in Figure 3. As an interesting

TABLE III
PARAMETERS FOR THE SECOND CONTROLLER SCHEME IN RADIANS

⇣2Base ⇣2COT ⇣2MFPT

KP 100 100 169.2681

KD 10 10 30.0166

↵1
0 3.6151 3.6151 3.6037

↵1
1 3.6413 3.6475 3.5957

↵1
2 3.3894 3.4675 3.3948

↵1
3 3.2884 3.2884 3.2914

↵1
4 3.1135 3.1135 3.1136

↵1
5 3.1708 3.1708 3.1701

↵1
6 3.0349 3.0349 3.0448

↵2
0 3.0349 3.0349 3.0448

↵2
1 2.9006 2.9081 2.9259

↵2
2 2.9544 3.4544 3.0162

↵2
3 3.5470 3.0939 3.5302

↵2
4 3.5186 3.5186 3.5255

↵2
5 3.6851 3.6929 3.7298

↵2
6 3.6151 3.6151 3.6037

↵3
0 -0.4162 -0.3693 -0.4113

↵3
1 -0.6657 -0.6079 -0.6018

↵3
2 -0.3732 0.0124 -0.3126

↵3
3 -0.3728 -0.6501 -0.3444

↵3
4 -0.2359 -0.1880 -0.2366

↵3
5 -0.3780 -0.3819 -0.3478

↵3
6 -0.3200 -0.3141 -0.3221

↵4
0 -0.3200 -0.3141 -0.3221

↵4
1 -0.2484 -0.2285 -0.2856

↵4
2 -0.3690 -0.7323 -0.3664

↵4
3 -1.1041 -0.1932 -1.1005

↵4
4 -0.3973 -0.3817 -0.3834

↵4
5 -0.4260 -0.5139 -0.5082

↵4
6 -0.4162 -0.3693 -0.4113

side note, ⇣2MFPT has a lower COT than ⇣2Base. This is possible,
because there is no speed constraint for ⇣2MFPT.

Table IV presents the Monte Carlo study obtained assum-
ing �

s

= 2. Just like in Table II, we omit the first step to
allow robot ”forget” the initial condition.

3. Comparison
We first note that all six controllers are stable on flat

ground (�
s

= 0), because they all exhibit limit cycle. How-
ever, as Table V shows, there is a huge difference between
⇣1MFPT and any of the HZD controllers. So, we conclude that
the first controller scheme is much more capable in terms of
stability.

On the other hand, the first controller scheme has discon-
tinuities in the references, which may or may not become
a problem in a real experiment. Furthermore, the trajectory
highly depends on the controller parameters, which we
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Goal	  is	  to	  control	  higher-‐DOF	  system	  

MuJoCo	  –	  Emo	  Todorov.	  (Thanks	  Emo!!)	  

(Understanding	  low-‐dim	  physics	  is	  a	  great	  starting	  point...)	  
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Planar	  Hopper	  Model	  
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!act !
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flight

   Passive	  	  	  vs	  	  	  	  Active	  

Motivation: enable MPC (model predictive control), by 
accurately steering toward desired next apex states. 
 
 
 
• Spring-‐Loaded	  Inverted	  Pendulum	  (SLIP)	  
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Reachable	  set	  ?	  
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dy/dt=0,	  leaving	  
x,	  y,	  and	  dx/dt.	  
Once	  touch-‐down	  
angle	  is	  set,	  reachable	  
states	  for	  a	  2D	  set	  
(approximately).	  
Spanning	  this	  region	  
requires	  2	  “knobs	  to	  
twiddle”	  in	  active	  
control	  during	  stance. 
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Reachability	  of	  Control	  Laws	  
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Rp: Piovan/Byl (2013) 

Rp: Schmitt/Clark (2009) 

Rtot: Full Reachable Space 

piston-like linear actuator, !act, placed in series with
the spring, as shown in Fig. 2. !act,0 defines the
initial/equilibrium value of the actuator. During
flight, any movement of the actuator does not have
an effect on the system’s dynamics, while during
the stance phase, the actuator can either compress
(!act > !act,0) or extend (!act < !act,0) the spring,
thus respectively adding or removing energy to/from
the system. The dynamics of the leg length during
stance phase, (1), become:

!̈ = −γ(!k − !k,0 − !act)− sin θ + !θ̇2.

At touch-down and take-off, the spring is at its
equilibrium position, !k,0. In the passive SLIP model,
this corresponds to the leg being at its neutral length,
!TD = !TO = !0. For the active SLIP model, instead,
this corresponds to !TD = !0, but !TO = !0+ !act,TO,
where !act,TO is the value of the actuator at take-
off. This means that the leg length at take-off is not
constant, but it is a function of the actuator’s length.

!k

!act !

Figure 2: Schematics of the active SLIP model.

Displacing the actuator during the stance phase
affects all three dimensions of the next apex state
reached. However, any actuation strategy applied to
its motion can only control two of the three dimen-
sions. For this reason, in this paper we choose to
consider the apex height and forward velocity only,
disregarding the forward position x, which is useful
mostly in path planning scenarios. Hence, we will
define the reduced apex state as S = {y, ẋ}. Let us
then define the following function, X , as the transi-
tion from one apex to the next:

X (S0, θTD, !act(t)) = S1,

where S1 is the apex state reached in one jump
from the initial apex state S0, with touch-down angle
θTD and actuator value function during stance phase
!act(t).

3 Reachability

In this section, we want to answer the following ques-
tion: starting from an initial apex state, to which
other apex states is it possible to drive the system,
when moving the actuator during the stance phase?

3.1 Reachable space

Starting from an initial apex state S0 = {ya, ẋa},
we call the reachable space of S0 the set of all apex
states that can be reached from S0 in one jump by
positioning the leg and moving the actuator:

R(S0) := {S1 | ∃ θTD, !a(t) : X (S0, θTD, !a(t)) = S1},

where θTD ∈ [π/2, π], and !act(t) is a continuous
function bounded by the physical limitations of the
actuator: !a(t) ∈ [!a,min, !a,max], ∀t ≥ 0.
In this work, we are interested in determining the

effect that the actuator’s displacement has on the
reachable space. Our study does not aim to propose a
leg-placement strategy, but rather to understand the
effect that the actuation has during the stance phase.
Therefore, we limit our analysis to a reduced reach-
able space, restricted to the case where the touch-
down angle, θTD, is fixed:

R(S0, θTD) := {S1 | ∃ !a(t) : X (S0, θTD, !a(t)) = S1}.

Obviously, R(S0, θTD) ⊆ R(S0).
For the passive SLIP model, the reachable space is

a point in the {y, ẋ}−space. Adding the series actua-
tor has the effect of extending the reachable set to a 2-
d surface, whose shape is determined by the ”shape”
of the function !act(t) during the stance phase. Var-
ious leg-actuation functions have been proposed and
can be found in the literature. We want here to com-
pare their reachability, to determine the best course
of action when choosing an actuation strategy.

Wanted: 
Ability to reach a 
large, open set 
(e.g., not a “bow-
tie”). Trade-offs in 
computation time 
vs. accuracy exist. 
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Computational	  Time	  Delay	  
• Let’s	  say	  we	  cannot	  act	  for	  the	  first	  dt,	  while	  initial	  
computations	  are	  done.	  

• Motivation:	  We	  are	  uncertain	  about	  terrain.	  
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Computational	  Time	  Delay	  
• Let’s	  say	  we	  cannot	  act	  for	  the	  first	  dt,	  while	  initial	  
computations	  are	  done.	  

• Motivation:	  We	  are	  uncertain	  about	  terrain.	  
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Our	  numeric	  approach	  (with	  
time	  delay)	  is	  in	  green.	  
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Computational	  Time	  Delay	  
• Let’s	  say	  we	  cannot	  act	  for	  the	  first	  dt,	  while	  initial	  
computations	  are	  done.	  

• Motivation:	  We	  are	  uncertain	  about	  terrain.	  

1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5
0.8

1

1.2

1.4

1.6

1.8

2

Our	  numeric	  approach	  (with	  
time	  delay)	  is	  in	  green.	  

(Reachability	  seems	  closely	  
related	  to	  “agility”…	  
See	  slide	  15	  again.)	  
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Varying	  touchdown	  angle	  
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(Still	  a	  very	  sparse	  “volume”	  
that	  is	  reachable,	  even	  when	  
leg	  touch-‐down	  angle	  varies.)	  
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“Hopper C” (Jason Cortell) 
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Robustness and Agility…�
 and the DRC? 
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DARPA	  Robotics	  Challenge	  (DRC)	  
•  Humanitarian	  Rescue,	  inspired	  by	  Fukushima	  
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Introduction
We	  started	  out	  on	  Track	  B…	  
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Introduction
We	  started	  out	  on	  Track	  B…	  

…but	  are	  now	  working	  with	  
JPL’s	  RoboSimian	  quadruped.	  	  

(Note	  how	  our	  trajectory	  
“optimally”	  hits	  all	  of	  DARPA’s	  

qualification	  roadblocks.)	  
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RoboSimian	  

Robotics Labc
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Asides on DRC Status

• RoboSimian’s	  design	  is	  robust	  on	  variable	  terrain.	  
As	  for	  agility:	  dexterous	  7-‐DOF	  limbs	  are	  slow.	  

•  JPL’s	  approach/viewpoint	  (with	  DARPA)	  
• Not	  trying	  to	  “game	  things”	  
• Trying	  to	  keep	  “in	  the	  spirit	  DARPA	  intends”	  

• High	  robotics	  personnel	  turn-‐over	  lately…	  
• Google,	  Apple,	  etc.	  hiring	  a	  lot	  of	  roboticists	  lately	  
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And	  a	  really	  quick	  update…	  
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RoboSimian:	  Coping	  with	  Variability	  

•  End-‐on-‐contact	  limb	  trajectories;	  then	  replan.	  
•  Lot	  of	  pre-‐processing	  (e.g.,	  kinematics):	  

	  -‐	  IK	  tables	  map	  3-‐DOF	  location	  (x,y,z)	  of	  end	  effector	  	  
	  	  	  to	  7-‐DOF	  joint	  solution.	  
	  -‐	  Solutions	  give	  efficient/fast	  motions.	  
	  -‐	  Designed	  for	  minimal	  collisions	  due	  to	  uncertainty.	  

•  Very	  strong	  hands	  are	  very	  useful	  (occasionally).	  
•  For	  very	  complex	  mobility,	  we’re	  NOT	  generalizing	  	  

“behaviors”	  –	  instead	  trying	  to	  demonstrate	  robot	  
capabilities.	  
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7x true speed. 

R2T2, at UCSB: Going Up…
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R2T2, at UCSB: …and Down.

7x true speed. 
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IK Tables Alone – Fast Walk
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More	  RoboSimian	  
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More	  RoboSimian	  
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Katie	  Byl	  
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4150 Harold Frank Hall
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More	  Rabbit	  Agility	  
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Other	  metrics	  of	  interest	  

How	  do	  we	  quantify:	  
• Terrain	  challenge	  /	  complexity	  ?	  


